Skip to main content

Estrogen-Metabolizing Gene Polymorphisms, Genetic Susceptibility, and Pharmacogenomics

  • Chapter
  • First Online:
The Role of Genetics in Breast and Reproductive Cancers

Part of the book series: Cancer Genetics ((CANGENETICS))

  • 975 Accesses

Abstract

A unique feature of steroids is their capacity for metamorphosis. Steroid hormones can be transformed into various metabolites exerting diverse effects. Converted steroids can be inactive, result in excretion of the steroid, occupy different receptors, and sometimes even show antagonistic effects to the precursor. This phenomenon is well documented for progesterone, androgens, and estrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jefcoate CR, Jefcoate CR, Liehr JG, Santen RJ, et al. Tissue-specific synthesis and oxidative metabolism of estrogens. In: Estrogens as endogenous carcinogens in the breast and prostate. Journal of the National Cancer Institute monograph. No. 27. Bethesda, MD: National Cancer Institute, 2000;95–112.

    Google Scholar 

  2. Liehr JG. Is estradiol a genotoxic mutagenic carcinogen? Endocr Rev. 2000;21:40–54.

    CAS  PubMed  Google Scholar 

  3. Hayes CL, Spink DC, Spink BC, Cao JQ, Walker NJ, Sutter TR. 17 Beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc Natl Acad Sci U S A. 1996;93:9776–81.

    CAS  PubMed  Google Scholar 

  4. Williams JA, Phillips DH. Mammary expression of xenobiotic metabolizing enzymes and their potential role in breast cancer. Cancer Res. 2000;60:4667–77.

    CAS  PubMed  Google Scholar 

  5. Yue W, Santen RJ, Wang JP, et al. Genotoxic metabolites of estradiol in breast: potential mechanism of estradiol induced carcinogenesis. J Steroid Biochem Mol Biol. 2003;86:477–86.

    CAS  PubMed  Google Scholar 

  6. Cavalieri E, Frenkel K, Liehr JG, Rogan E, Roy D. Estrogens as endogenous genotoxic agents – DNA adducts and mutations. In: Estrogens as endogenous carcinogens in the breast and prostate. Journal of the National Cancer Institute monograph. No. 27. Bethesda, MD: National Cancer Institute, 2000;75–93.

    Google Scholar 

  7. Devanesan P, Todorovic R, Zhao J, Gross ML, Rogan EG, Cavalieri EL. Catechol estrogen conjugates and DNA adducts in the kidney of male Syrian golden hamsters treated with 4 hydroxyestradiol: potential biomarkers for estrogen-initiated cancer. Carcinogenesis. 2001;22:489–97.

    CAS  PubMed  Google Scholar 

  8. Cavalieri EL, Kumar S, Todorovic R, Higginbotham S, Badawi AF, Rogan EG. Imbalance of estrogen homeostasis in kidney and liver of hamsters treated with estradiol: implications for estrogen-induced initiation of renal tumors. Chem Res Toxicol. 2001;14:1041–50.

    CAS  PubMed  Google Scholar 

  9. Chakravarti D, Mailander PC, Li KM, et al. Evidence that a burst of DNA depurination in SENCAR mouse skin induces error-prone repair and forms mutations in the H-ras gene. Oncogene. 2001;20:7945–53.

    CAS  PubMed  Google Scholar 

  10. van Landeghem AA, Poortman J, Nabuurs M, Thijssen JH. Endogenous concentration and subcellular distribution of estrogens in normal and malignant human breast tissue. Cancer Res. 1985;45:2900–6.

    PubMed  Google Scholar 

  11. Mitrunen K, Hirvonen A. Molecular epidemiology of sporadic breast cancer: the role of polymorphic genes involved in oestrogen biosynthesis and metabolism. Mutat Res. 2003;544:9–41.

    CAS  PubMed  Google Scholar 

  12. Ritchie MD, Hahn LW, Roodi N, et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet. 2001;69:138–47.

    CAS  PubMed  Google Scholar 

  13. Lee AJ, Cai MX, Thomas PE, Conney AH, Zhu BT. Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology. 2003;144(8):3382–98.

    CAS  PubMed  Google Scholar 

  14. Bradlow HL, Telang NT, Sepkovic DW, Osborne MP. 2-hydroxyestrone: the ‘good’ estrogen. J Endocrinol. 1996;150 Suppl:S259–65.

    Google Scholar 

  15. Firozi PF, Bondy ML, Sahin AA, Chang P, Lukmanji F, Singletary ES, Hassan MM, Li D. Aromatic DNA adducts and polymorphisms of CYP1A1, NAT2, and GSTM1 in breast cancer. Carcinogenesis. 2002;23(2):301–6.

    CAS  PubMed  Google Scholar 

  16. McManus ME, Burgess WM, Veronese ME, Huggett A, Quattrochi LC, Tukey RH. Metabolism of 2-acetylaminofluorene and benzo(a)pyrene and activation of food-derived heterocyclic amine mutagens by human cytochromes P-450. Cancer Res. 1990;50(11):3367–76.

    CAS  PubMed  Google Scholar 

  17. Shen Y, Li DK, Wu J, Zhang Z, Gao E. Joint effects of the CYP1A1 MspI, ERalpha PvuII, and ERalpha XbaI polymorphisms on the risk of breast cancer: results from a population-based case–control study in Shanghai, China. Cancer Epidemiol Biomarkers Prev. 2006;15(2):342–7.

    CAS  PubMed  Google Scholar 

  18. Spurr NK, Gough AC, Stevenson K, Wolf CR. Msp-1 polymorphism detected with a cDNA probe for the P-450 I family on chromosome 15. Nucleic Acids Res. 1987;15(14):5901.

    CAS  PubMed  Google Scholar 

  19. Hayashi SI, Watanabe J, Nakachi K, Kawajiri K. PCR detection of an A/G polymorphism within exon 7 of the CYP1A1 gene. Nucleic Acids Res. 1991;19(17):4797.

    CAS  PubMed  Google Scholar 

  20. Crofts F, Cosma GN, Currie D, Taioli E, Toniolo P, Garte SJ. A novel CYP1A1 gene polymorphism in African-Americans. Carcinogenesis. 1993;14(9):1729–31.

    CAS  PubMed  Google Scholar 

  21. Cascorbi I, Brockmoller J, Roots I. A C4887A polymorphism in exon 7 of human CYP1A1: population frequency, mutation linkages, and impact on lung cancer susceptibility. Cancer Res. 1996;56(21):4965–9.

    CAS  PubMed  Google Scholar 

  22. Kawajiri K. CYP1A1. IARC Sci Publ. 1999;(148):159–72.

    Google Scholar 

  23. Cosma G, Crofts F, Taioli E, Toniolo P, Garte S. Relationship between genotype and function of the human CYP1A1 gene. J Toxicol Environ Health. 1993;40(2–3):309–16.

    CAS  PubMed  Google Scholar 

  24. Kiyohara C, Hirohata T, Inutsuka S. The relationship between aryl hydrocarbon hydroxylase and polymorphisms of the CYP1A1 gene. Jpn J Cancer Res. 1996;87(1):18–24.

    CAS  PubMed  Google Scholar 

  25. Bartsch H, Nair U, Risch A, Rojas M, Wikman H, Alexandrov K. Genetic polymorphism of CYP genes, alone or in combination, as a risk modifier of tobacco-related cancers. Cancer Epidemiol Biomarkers Prev. 2000;9(1):3–28.

    CAS  PubMed  Google Scholar 

  26. Masson LF, Sharp L, Cotton SC, Little J. Cytochrome P-450 1A1 gene polymorphisms and risk of breast cancer: a HuGE review. Am J Epidemiol. 2005;161(10):901–15.

    CAS  PubMed  Google Scholar 

  27. Ishibe N, Hankinson SE, Colditz GA, Spiegelman D, Willett WC, Speizer FE, Kelsey KT, Hunter DJ. Cigarette smoking, cytochrome P450 1A1 polymorphisms, and breast cancer risk in the Nurses’ Health Study. Cancer Res. 1998;58(4):667–71.

    CAS  PubMed  Google Scholar 

  28. Michnovicz JJ, Adlercreutz H, Bradlow HL. Changes in levels of urinary estrogen metabolites after oral indole-3-carbinol treatment in humans. J Natl Cancer Inst. 1997;89(10):718–23.

    CAS  PubMed  Google Scholar 

  29. Kisselev P, Schunck WH, Roots I, Schwarz D. Association of CYP1A1 polymorphisms with differential metabolic activation of 17beta-estradiol and estrone. Cancer Res. 2005;65(7):2972–8.

    CAS  PubMed  Google Scholar 

  30. Garte SJ, Trachman J, Crofts F, Toniolo P, Buxbaum J, Bayo S, Taioli E. Distribution of composite CYP1A1 genotypes in Africans, African-Americans and Caucasians. Hum Hered. 1996;46:121–127.

    Google Scholar 

  31. Chen C, Huang Y, Li Y, Mao Y, Xie Y. Cytochrome P450 1A1 (CYP1A1) T3801C and A2455G polymorphisms in breast cancer risk: a meta-analysis. J Hum Genet. 2007;52(5):423–35. Epub 2007 Apr 11

    CAS  PubMed  Google Scholar 

  32. Terry KL, Titus-Ernstoff L, Garner EO, Vitonis AF, Cramer DW. Interaction between CYP1A1 polymorphic variants and dietary exposures influencing ovarian cancer risk. Cancer Epidemiol Biomarkers Prev. 2003;12(3):187–90.

    CAS  PubMed  Google Scholar 

  33. Vineis P, Veglia F, Benhamou S, et al. CYP1A1 T3801C polymorphism and lung cancer: a pooled analysis of 2451 cases and 3358 controls. Int J Cancer. 2003;104:650–7.

    CAS  PubMed  Google Scholar 

  34. Le Marchand L, Guo C, Benhamou S, et al. Pooled analysis of the CYP1A1 exon 7 polymorphism and lung cancer (United States). Cancer Causes Control. 2003;14:339–46.

    PubMed  Google Scholar 

  35. Taioli E, Gaspari L, Benhamou S, et al. Polymorphisms in CYP1A1, GSTM1, GSTT1 and lung cancer below the age of 45 years. Int J Epidemiol. 2003;32:60–3.

    CAS  PubMed  Google Scholar 

  36. Hung RJ, Boffetta P, Brockmoller J, et al. CYP1A1 and GSTM1 genetic polymorphisms and lung cancer risk in Caucasian non-smokers: a pooled analysis. Carcinogenesis. 2003;24:875–82.

    CAS  PubMed  Google Scholar 

  37. Kawajiri K, Nakachi K, Imai K, Watanabe J, Hayashi S. The CYP1A1 gene and cancer susceptibility. Crit Rev Oncol Hematol. 1993;14(1):77–87.

    CAS  PubMed  Google Scholar 

  38. Kawajiri K, Nakachi K, Imai K, Yoshii A, Shinoda N, Watanabe J. Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P450IA1 gene. FEBS Lett. 1990;263(1):131–3.

    CAS  PubMed  Google Scholar 

  39. Houlston RS. CYP1A1 polymorphisms and lung cancer risk: a meta-analysis. Pharmacogenetics. 2000;10(2):105–14.

    CAS  PubMed  Google Scholar 

  40. Kawajiri K, et al. Metabolic polymorphisms and susceptibility to cancer. IARC Sci Publ. 1999:148:159–172.

    CAS  PubMed  Google Scholar 

  41. Le Marchand L, Donlon T, Kolonel LN, Henderson BE, Wilkens LR. Estrogen metabolism-related genes and breast cancer risk: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev. 2005;14(8):1998–2003.

    PubMed  Google Scholar 

  42. Vineis P, Veglia F, Anttila S, Benhamou S, Clapper ML, Dolzan V, Ryberg D, Hirvonen A, Kremers P, Le Marchand L, Pastorelli R, Rannug A, Romkes M, Schoket B, Strange RC, Garte S, Taioli E. CYP1A1, GSTM1 and GSTT1 polymorphisms and lung cancer: a pooled analysis of gene–gene interactions. Biomarkers. 2004;9(3):298–305.

    CAS  PubMed  Google Scholar 

  43. Wang X, Zuckerman B, Pearson C, Kaufman G, Chen C, Wang G, Niu T, Wise PH, Bauchner H, Xu X. Maternal cigarette smoking, metabolic gene polymorphism, and infant birth weight. JAMA. 2002;287(2):195–202.

    CAS  PubMed  Google Scholar 

  44. Roth MJ, Abnet CC, Johnson LL, Mark SD, Dong ZW, Taylor PR, Dawsey SM, Qiao YL. Polymorphic variation of Cyp1A1 is associated with the risk of gastric cardia cancer: a prospective case–cohort study of cytochrome P-450 1A1 and GST enzymes. Cancer Causes Control. 2004;15(10):1077–83.

    PubMed  Google Scholar 

  45. Abbas A, Delvinquiere K, Lechevrel M, Lebailly P, Gauduchon P, Launoy G, Sichel F. GSTM1, GSTT1, GSTP1 and CYP1A1 genetic polymorphisms and susceptibility to esophageal cancer in a French population: different pattern of squamous cell carcinoma and adenocarcinoma. World J Gastroenterol. 2004;10(23):3389–93.

    CAS  PubMed  Google Scholar 

  46. Slattery ML, Samowtiz W, Ma K, Murtaugh M, Sweeney C, Levin TR, Neuhausen S. CYP1A1, cigarette smoking, and colon and rectal cancer. Am J Epidemiol. 2004;160(9):842–52.

    PubMed  Google Scholar 

  47. Wang XL, Greco M, Sim AS, Duarte N, Wang J, Wilcken DE. Effect of CYP1A1 MspI polymorphism on cigarette smoking related coronary artery disease and diabetes. Atherosclerosis. 2002;162(2):391–7.

    CAS  PubMed  Google Scholar 

  48. Fritsche E, Schuppe HC, Döhr O, Ruzicka T, Gleichmann E, Abel J. Increased frequencies of cytochrome P4501A1 polymorphisms in infertile men. Andrologia. 1998;30(3):125–8.

    CAS  PubMed  Google Scholar 

  49. von Schmiedeberg S, Fritsche E, Rönnau AC, Specker C, Golka K, Richter-Hintz D, Schuppe HC, Lehmann P, Ruzicka T, Esser C, Abel J, Gleichmann E. Polymorphisms of the xenobiotic-metabolizing enzymes CYP1A1 and NAT-2 in systemic sclerosis and lupus erythematosus. Adv Exp Med Biol. 1999;455:147–52.

    Google Scholar 

  50. Gardlo K, Selimovic D, Bolsen K, Ruzicka T, Abel J, Fritsch C. Cytochrome p450A1 polymorphisms in a Caucasian population with porphyria cutanea tarda. Exp Dermatol. 2003;12(6):843–8.

    CAS  PubMed  Google Scholar 

  51. Richter-Hintz D, Their R, Steinwachs S, Kronenberg S, Fritsche E, Sachs B, Wulferink M, Tonn T, Esser C. Allelic variants of drug metabolizing enzymes as risk factors in psoriasis. J Invest Dermatol. 2003;120(5):765–70.

    CAS  PubMed  Google Scholar 

  52. Yen JH, Tsai WC, Chen CJ, Lin CH, Ou TT, Hu CJ, Liu HW. Cytochrome P450 1A1 and manganese superoxide dismutase genes polymorphisms in ankylosing spondylitis. Immunol Lett. 2003;88(2):113–6.

    CAS  PubMed  Google Scholar 

  53. Yen JH, Chen CJ, Tsai WC, Lin CH, Ou TT, Hu CJ, Liu HW. Manganese superoxide dismutase and cytochrome P450 1A1 genes polymorphisms in rheumatoid arthritis in Taiwan. Hum Immunol. 2003;64(3):366–73.

    CAS  PubMed  Google Scholar 

  54. Arvanitis DA, Koumantakis GE, Goumenou AG, Matalliotakis IM, Koumantakis EE, Spandidos DA. CYP1A1, CYP19, and GSTM1 polymorphisms increase the risk of endometriosis. Fertil Steril. 2003;79 Suppl 1:702–9.

    PubMed  Google Scholar 

  55. Hadfield RM, Manek S, Weeks DE, Mardon HJ, Barlow DH, Kennedy SH, OXEGENE Collaborative Group. Linkage and association studies of the relationship between endometriosis and genes encoding the detoxification enzymes GSTM1, GSTT1 and CYP1A1. Mol Hum Reprod. 2001;7(11):1073–8.

    CAS  PubMed  Google Scholar 

  56. Iizuka S, Kosugi Y, Isaka K, et al. Could polymorphisms of N-acetyltransferase 2 (NAT2), glutathione S-transferase M1 (GSTM1), and cytochrome P450 (CYP1A1) be responsible for genetic predisposition to endometriosis among Japanese? Zasshi Tokyo Ika Daigaku. 2003;61:59–66.

    CAS  Google Scholar 

  57. Nicholl DJ, Bennett P, Hiller L, Bonifati V, Vanacore N, Fabbrini G, Marconi R, Colosimo C, Lamberti P, Stocchi F, Bonuccelli U, Vieregge P, Ramsden DB, Meco G, Williams AC. A study of five candidate genes in Parkinson’s disease and related neurodegenerative disorders. European Study Group on Atypical Parkinsonism. Neurology. 1999;53(7):1415–21.

    CAS  PubMed  Google Scholar 

  58. Chan DK, Mellick GD, Buchanan DD, Hung WT, Ng PW, Woo J, Kay R. Lack of association between CYP1A1 polymorphism and Parkinson’s disease in a Chinese population. J Neural Transm. 2002;109(1):35–9.

    CAS  PubMed  Google Scholar 

  59. Takakubo F, Yamamoto M, Ogawa N, Yamashita Y, Mizuno Y, Kondo I. Genetic association between cytochrome P450IA1 gene and susceptibility to Parkinson’s disease. J Neural Transm. 1996;103(7):843–9.

    CAS  PubMed  Google Scholar 

  60. Kurth MC, Kurth JH. Variant cytochrome P450 CYP2D6 allelic frequencies in Parkinson’s disease. Am J Med Genet. 1993;48(3):166–8.

    CAS  PubMed  Google Scholar 

  61. Ciolino HP, Yeh GC. Inhibition of aryl hydrocarbon-induced cytochrome P-450 1A1 enzyme activity and CYP1A1 expression by resveratrol. Mol Pharmacol. 1999;56(4):760–7.

    CAS  PubMed  Google Scholar 

  62. Muskhelishvili L, Thompson PA, Kusewitt DF, Wang C, Kadlubar FF. In situ hybridization and immunohistochemical analysis of cytochrome P450 1B1 expression in human normal tissues. J Histochem Cytochem. 2001;49:229–36.

    CAS  PubMed  Google Scholar 

  63. Rochat B, Morsman JM, Murray GI, Figg WD, McLeod HL. Human CYP1B1 and anticancer agent metabolism: mechanism for tumor-specific drug inactivation? J Pharmacol Exp Ther. 2001;296:537–41.

    CAS  PubMed  Google Scholar 

  64. Wen W. Expression of cytochrome P450 1B1 and catechol-O-methyltransferase in breast tissue and their associations with breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2007;16(5):917–20.

    CAS  PubMed  Google Scholar 

  65. McKay JA, Melvin WT, Ah-See AK, et al. Expression of cytochrome P450 CYP1B1 in breast cancer. FEBS Lett. 1995;374:270–2.

    CAS  PubMed  Google Scholar 

  66. Hatanaka N, Yamazaki H, Oda Y, Guengerich FP, Nakajima M, Yokoi T. Metabolic activation of carcinogenic 1-nitropyrene by human cytochrome P450 1B1 in Salmonella typhimurium strain expressing an O-acetyltransferase in SOS/umu assay. Mutat Res. 2001;497:223–33.

    CAS  PubMed  Google Scholar 

  67. Listgarten J, Damaraju S, Poulin B, et al. Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms. Clin Cancer Res. 2004;10:2725–37.

    CAS  PubMed  Google Scholar 

  68. Shimada T, Hayes CL, Yamazaki H, et al. Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res. 1996;56:2979–84.

    CAS  PubMed  Google Scholar 

  69. Tanaka Y, Sasaki M, Kaneuchi M, Shiina H, Igawa M, Dahiya R. Polymorphisms of the CYP1B1 gene have higher risk for prostate cancer. Biochem Biophys Res Commun. 2002;296:820–6.

    CAS  PubMed  Google Scholar 

  70. Stoilov I, Akarsu AN, Alozie I, et al. Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P4501B1. Am J Hum Genet. 1998;62:573–84.

    CAS  PubMed  Google Scholar 

  71. Cuthill S, Poellinger L, Gustafsson JA. The receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in the mouse hepatoma cell line Hepa 1c1c7. A comparison with the glucocorticoid receptor and the mouse and rat hepatic dioxin receptors. J Biol Chem. 1987;262:3477–81.

    CAS  PubMed  Google Scholar 

  72. Widschwendter M, Siegmund KD, Muller HM, et al. Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res. 2004;64:3807–13.

    CAS  PubMed  Google Scholar 

  73. Tokizane T, Shiina H, Igawa M, et al. Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer. Clin Cancer Res. 2005;11:5793–801.

    CAS  PubMed  Google Scholar 

  74. Han W, Kang D, Park IA, et al. Associations between breast cancer susceptibility gene polymorphisms and clinicopathological features. Clin Cancer Res. 2004;10:124–30.

    CAS  PubMed  Google Scholar 

  75. Shimada T, Watanabe J, Kawajiri K, et al. Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis. 1999;20:1607–13.

    CAS  PubMed  Google Scholar 

  76. Hanna IH, Dawling S, Roodi N, Guengerich FP, Parl FF. Cytochrome P450 1B1 (CYP1B1) pharmacogenetics: association of polymorphisms with functional differences in estrogen hydroxylation activity. Cancer Res. 2000;60:3440–4.

    CAS  PubMed  Google Scholar 

  77. Li DN, Seidel A, Pritchard MP, Wolf CR, Friedberg T. Polymorphisms in P450 CYP1B1 affect the conversion of estradiol to the potentially carcinogenic metabolite 4-hydroxyestradiol. Pharmacogenetics. 2000;10:343–53.

    CAS  PubMed  Google Scholar 

  78. Bailey LR, Roodi N, Dupont WD, Parl FF. Association of cytochrome P450 1B1 (CYP1B1) polymorphism with steroid receptor status in breast cancer. Cancer Res. 1998;58:5038–41.

    CAS  PubMed  Google Scholar 

  79. Landi MT, Bergen AW, Baccarelli A, et al. CYP1A1 and CYP1B1 genotypes, haplotypes, and TCDD-induced gene expression in subjects from Seveso, Italy. Toxicology. 2005;207:191–202.

    CAS  PubMed  Google Scholar 

  80. Poland A, Glover E, Bradfield CA. Characterization of polyclonal antibodies to the Ah receptor prepared by immunization with a synthetic peptide hapten. Mol Pharmacol. 1991;39:20–6.

    CAS  PubMed  Google Scholar 

  81. Henry EC, Rucci G, Gasiewicz TA. Characterization of multiple forms of the Ah receptor: comparison of species and tissues. Biochemistry. 1989;28:6430–40.

    CAS  PubMed  Google Scholar 

  82. Ikuta T, Eguchi H, Tachibana T, Yoneda Y, Kawajiri K. Nuclear localization and export signals of the human aryl hydrocarbon receptor. J Biol Chem. 1998;273:2895–904.

    CAS  PubMed  Google Scholar 

  83. Prokipcak RD, Okey AB. Physicochemical characterization of the nuclear form of Ah receptor from mouse hepatoma cells exposed in culture to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Arch Biochem Biophys. 1988;267:811–28.

    CAS  PubMed  Google Scholar 

  84. Paracchini V, Raimondi S, Gram IT, Kang D, Kocabas NA, Kristensen VN, Li D, Parl FF, Rylander-Rudqvist T, Soucek P, Zheng W, Wedren S, Taioli E. Meta- and pooled analyses of the cytochrome P-450 1B1 Val432Leu polymorphism and breast cancer: a HuGE-GSEC review. Am J Epidemiol. 2007;165(2):115–25. Epub 2006 Oct 19.

    PubMed  Google Scholar 

  85. Saintot M, Malaveille C, Hautefeuille A, Gerber M. Interactions between genetic polymorphism of cytochrome P450-1B1, sulfotransferase 1A1, catechol-O-methyltransferase and tobacco exposure in breast cancer risk. Int J Cancer. 2003;107:652–7.

    CAS  PubMed  Google Scholar 

  86. Zheng W, Xie DW, Jin F, Cheng JR, Dai Q, Wen WQ, Shu XO, Gao YT. Genetic polymorphism of cytochrome P450-1B1 and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2000;9:147–150.

    CAS  PubMed  Google Scholar 

  87. Kocabas NA, Sardas S, Cholerton S, Daly AK, Karakaya AE. Cytochrome P450 CYP1B1 and catechol O-methyltransferase (COMT) genetic polymorphisms and breast cancer susceptibility in a Turkish population. Arch Toxicol. 2002;76:643–9.

    CAS  PubMed  Google Scholar 

  88. Cook L. Hormones, genes, and cancer. New York: Oxford University Press, 2003;371–9.

    Google Scholar 

  89. Rylander-Rudqvist T, Wedren S, Granath F, Humphreys K, Ahlberg S, Weiderpass E, Oscarson M, Ingelman-Sundberg M, Persson I. Cytochrome P450 1B1 gene polymorphisms and postmenopausal breast cancer risk. Carcinogenesis. 24(9):1533–9. Epub 2003 Jul 4.

    CAS  PubMed  Google Scholar 

  90. Justenhoven C, Pierl CB, Haas S, Fischer HP, Baisch C, Hamann U, Harth V, Pesch B, Brüning T, Vollmert C, Illig T, Dippon J, Ko YD, Brauch H. The CYP1B1_1358_GG genotype is associated with estrogen receptor-negative breast cancer. Breast Cancer Res Treat. 2007 Oct 6.

    Google Scholar 

  91. Liehr JG, Ricci MJ, Jefcoate CR, Hannigan EV, Hokanson JA, Zhu BT. 4-Hydroxylation of estradiol by human uterine myometrium and myoma microsomes: implications for the mechanism of uterine tumorigenesis. Proc Natl Acad Sci U S A. 1995;92:9220–4.

    CAS  PubMed  Google Scholar 

  92. Newbold RR, Liehr JG. Induction of uterine adenocarcinoma in CD-1 mice by catechol estrogens. Cancer Res. 2000;60:235–7.

    CAS  PubMed  Google Scholar 

  93. Raftogianis R, Creveling C, Weinshilboum R, Weisz J. Estrogen metabolism by conjugation. J Natl Cancer Inst Monogr. 2000;27:113–24.

    CAS  PubMed  Google Scholar 

  94. Doostdar H, Burke MD, Mayer RT. Bioflavonoids: selective substrates and inhibitors for cytochrome P450 CYP1A and CYP1B1. Toxicology. 2000;144(1–3):31–8.

    CAS  PubMed  Google Scholar 

  95. Wen X, Walle T. Preferential induction of CYP1B1 by benzo[a]pyrene in human oral epithelial cells: impact on DNA adduct formation and prevention by polyphenols. Carcinogenesis. 2005;26(10):1774–81. Epub 2005 May 19.

    CAS  PubMed  Google Scholar 

  96. Sovak M. Grape extract, resveratrol, and its analogs: a review. J Med Food. 2001;4(2):93–105.

    CAS  PubMed  Google Scholar 

  97. McFadyen MC, Melvin WT, Murray GI. Cytochrome P450 enzymes: novel options for cancer therapeutics. Mol Cancer Ther. 2004;3(3):363–71.

    CAS  PubMed  Google Scholar 

  98. Mammen JS, Kleiner HE, DiGiovanni J, Sutter TR, Strickland PT. Coumarins are competitive inhibitors of cytochrome P450 1B1, with equal potency for allelic variants. Pharmacogenet Genomics. 2005;15(3):183–8.

    CAS  PubMed  Google Scholar 

  99. Anstead GM, Carlson KE, Katzenellenbogen JA. The estradiol pharmacophore: ligand structure-estrogen receptor binding affinity relationships and a model for the receptor binding site. Steroids. 1997;62:268–303.

    CAS  PubMed  Google Scholar 

  100. Schutze N, Vollmer G, Tiemann I, Geiger M, Knuppen R. Catecholestrogens are MCF-7 cell estrogen receptor agonists. J Steroid Biochem Mol Biol. 1993;46:781–9.

    CAS  PubMed  Google Scholar 

  101. Schutze N, Vollmer G, Knuppen R. Catecholestrogens are agonists of estrogen receptor dependent gene expression in MCF-7 cells. J Steroid Biochem Mol Biol. 1994;48:453–61.

    CAS  PubMed  Google Scholar 

  102. Hoogenboom LAP, de Haan L, Hooijerink D, Bor G, Murk AJ, Brouwer A. Estrogenic activity of estradiol and its metabolites in the ER-CALUX assay with human T47D breast cells. APMIS. 2001;109:101–7.

    CAS  PubMed  Google Scholar 

  103. Lavigne JA, Helzlsouer KJ, Huang HY, Strickland PT, Bell DA, Selmin O, Watson MA, Hoffman S, Comstock GW, Yager JD. An association between the allele coding for a low activity variant of catechol-O-methyltransferase and the risk for breast cancer. Cancer Res. 1997;57(24):5493–7.

    CAS  PubMed  Google Scholar 

  104. Tworoger SS, Chubak J, Aiello EJ, Ulrich CM, Atkinson C, Potter JD, Yasui Y, Stapleton PL, Lampe JW, Farin FM, Stanczyk FZ, McTiernan A. Association of CYP17, CYP19, CYP1B1, and COMT polymorphisms with serum and urinary sex hormone concentrations in postmenopausal women. Cancer Epidemiol Biomarkers Prev. 2004;13(1):94–101.

    CAS  PubMed  Google Scholar 

  105. Sazci A, Ergul E, Utkan NZ, Canturk NZ, Kaya G. Catechol-O-methyltransferase Val 108/158 Met polymorphism in premenopausal breast cancer patients. Toxicology. 2004;204(2–3):197–202.

    CAS  PubMed  Google Scholar 

  106. Gaudet MM, Bensen JT, Schroeder J, Olshan AF, Terry MB, Eng SM, Teitelbaum SL, Britton JA, Lehman TA, Neugut AI, Ambrosone CB, Santella RM, Gammon MD. Catechol-O-methyltransferase haplotypes and breast cancer among women on Long Island, New York. Breast Cancer Res Treat. 2006;99(2):235–40. Epub 2006 Apr 5.

    CAS  PubMed  Google Scholar 

  107. Goodman JE, Lavigne JA, Wu K, Helzlsouer KJ, Strickland PT, Selhub J, Yager JD. COMT genotype, micronutrients in the folate metabolic pathway and breast cancer risk. Carcinogenesis. 2001;22(10):1661–5.

    CAS  PubMed  Google Scholar 

  108. Hong CC, Thompson HJ, Jiang C, Hammond GL, Tritchler D, Yaffe M, Boyd NF. Val158Met polymorphism in catechol-O-methyltransferase gene associated with risk factors for breast cancer. Cancer Epidemiol Biomarkers Prev. 2003;12(9):838–47.

    CAS  PubMed  Google Scholar 

  109. Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature. 2000;407(6802):390–5.

    CAS  PubMed  Google Scholar 

  110. Nagai M, Conney AH, Zhu BT. Strong inhibitory effects of common tea catechins and bioflavonoids on the O-methylation of catechol estrogens catalyzed by human liver cytosolic catechol-O-methyltransferase. Drug Metab Dispos. 2004;32(5):497–504.

    CAS  PubMed  Google Scholar 

  111. Gorai I, Tanaka K, Inada M, Morinaga H, Uchiyama Y, Kikuchi R, Chaki O, Hirahara F. Estrogen-metabolizing gene polymorphisms, but not estrogen receptor-alpha gene polymorphisms, are associated with the onset of menarche in healthy postmenopausal Japanese women. J Clin Endocrinol Metab. 2003;88(2):799–803.

    CAS  PubMed  Google Scholar 

  112. Zhu BT, Conney AH. Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis. 1998;19(1):1–27.

    PubMed  Google Scholar 

  113. Fotsis T, Zhang Y, Pepper MS, Adlercreutz H, Montesano R, Nawroth PP, Schweigerer L. The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature. 1994;368(6468):237–9.

    CAS  PubMed  Google Scholar 

  114. Bu S, Blaukat A, Fu X, Heldin NE, Landström M. Mechanisms for 2-methoxyestradiol-induced apoptosis of prostate cancer cells. FEBS Lett. 2002;531(2):141–51.

    CAS  PubMed  Google Scholar 

  115. Mabjeesh NJ, Post DE, Willard MT, Kaur B, Van Meir EG, Simons JW, Zhong H. Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells. Cancer Res. 2002;62(9):2478–82.

    CAS  PubMed  Google Scholar 

  116. Lakhani NJ, Venitz J, Figg WD, Sparreboom A. Pharmacogenetics of estrogen metabolism and transport in relation to cancer. Curr Drug Metab. 2003;4(6):505–13.

    CAS  PubMed  Google Scholar 

  117. Sasaki M, Kaneuchi M, Sakuragi N, Dahiya R. Multiple promoters of catechol-O-methyltransferase gene are selectively inactivated by CpG hypermethylation in endometrial cancer. Cancer Res. 2003;63(12):3101–6.

    CAS  PubMed  Google Scholar 

  118. Wedrén S, Rudqvist TR, Granath F, Weiderpass E, Ingelman-Sundberg M, Persson I, Magnusson C. Catechol-O-methyltransferase gene polymorphism and post-menopausal breast cancer risk. Carcinogenesis. 2003;24(4):681–7.

    PubMed  Google Scholar 

  119. Dubey RK, Gillespie DG, Zacharia LC, Rosselli M, Korzekwa KR, Fingerle J, Jackson EK. Methoxyestradiols mediate the antimitogenic effects of estradiol on vascular smooth muscle cells via estrogen receptor-independent mechanisms. Biochem Biophys Res Commun. 2000;278(1):27–33.

    CAS  PubMed  Google Scholar 

  120. Dubey RK, Gillespie DG, Zacharia LC, Barchiesi F, Imthurn B, Jackson EK. CYP450- and COMT-derived estradiol metabolites inhibit activity of human coronary artery SMCs. Hypertension. 2003;41(3 Pt 2):807–13. Epub 2002 Dec 23.

    CAS  PubMed  Google Scholar 

  121. Eriksson AL, Skrtic S, Niklason A, Hultén LM, Wiklund O, Hedner T, Ohlsson C. Association between low activity genotype of catechol-O-methyltransferase and myocardial infarction in a hypertensive population. Eur Heart J. 2004;25(5):386–91.

    CAS  PubMed  Google Scholar 

  122. Gellekink H, Muntjewerff JW, Vermeulen SH, Hermus AR, Blom HJ, den Heijer M. Catechol-O-methyltransferase genotype is associated with plasma total homocysteine levels and may increase venous thrombosis risk. Thromb Haemost. 2007;98(6):1226–31.

    CAS  PubMed  Google Scholar 

  123. Dubey RK, Jackson EK. Estrogen-induced cardiorenal protection: potential cellular, biochemical, and molecular mechanisms. Am J Physiol Renal Physiol. 2001;280(3):F365–88.

    CAS  PubMed  Google Scholar 

  124. Mondschein JS, Hammond JM, Weisz J. Characteristics of estrogen-2/4-hydroxylase of porcine ovarian follicles: influence of steroidal and non-steroidal agents on the activity of the enzyme in vitro. J Steroid Biochem. 1987;26(1):121–4.

    CAS  PubMed  Google Scholar 

  125. Levine RL, Chen SJ, Durand J, Chen YF, Oparil S. Medroxyprogesterone attenuates estrogen-mediated inhibition of neo-intima formation after balloon injury of the rat carotid artery. Circulation. 1996;94(9):2221–7.

    CAS  PubMed  Google Scholar 

  126. Salama SA, Jamaluddin M, Kumar R, Hassan MH, Al-Hendy A. Progesterone regulates catechol-O-methyl transferase gene expression in breast cancer cells: distinct effect of progesterone receptor isoforms. J Steroid Biochem Mol Biol. 2007;107(3–5):253–61. Epub 2007 Jun 30.

    CAS  PubMed  Google Scholar 

  127. Männistö PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of new selective COMT inhibitors. Pharmacol Rev. 1999;51(4):593–628.

    PubMed  Google Scholar 

  128. Saab PG, Matthews KA, Stoney CM, McDonald RH. Premenopausal and postmenopausal women differ in their cardiovascular and neuroendocrine responses to behavioural stressors. Psychophysiology. 1989;26(3):270–80.

    CAS  PubMed  Google Scholar 

  129. Villecco AS, de Aloysio D, Radi D, Sprovieri G, Bargossi AM, Grossi G, Gueli C, Salgarello M, Cavrini G. Plasma catecholamines in pre- and postmenopausal women with mild to moderate essential hypertension. J Hum Hypertens. 1997;11(3):157–62.

    CAS  PubMed  Google Scholar 

  130. Goldstein DS. Plasma catecholamines and essential hypertension: an analytical review. Hypertension. 1983;5(1):86–99.

    CAS  PubMed  Google Scholar 

  131. Cohn JN, Johnson GR, Shabetai R, Loeb H, Tristani F, Rector T, Smith R, Fletcher R. Ejection fraction, peak exercise oxygen consumption, cardiothoracic ratio, ventricular arrhythmias, and plasma norepinephrine as determinants of prognosis in heart failure. The V-HeFT VA Cooperative Studies Group. Circulation. 1993;87(6 Suppl):VI5–16.

    CAS  PubMed  Google Scholar 

  132. Kaplan JR, Pettersson K, Manuck SB, Olsson G. Role of sympathoadrenal medullary activation in the initiation and progression of atherosclerosis. Circulation. 1991;84(6 Suppl):VI23–32.

    CAS  PubMed  Google Scholar 

  133. Adamopoulos S, Piepoli M, McCance A, Bernardi L, Rocadaelli A, Ormerod O, Forfar C, Sleight P, Coats AJ. Comparison of different methods for assessing sympathovagal balance in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol. 1992;70(20):1576–82.

    CAS  PubMed  Google Scholar 

  134. Tworoger SS, Chubak J, Aiello EJ, Yasui Y, Ulrich CM, Farin FM, Stapleton PL, Irwin ML, Potter JD, Schwartz RS, McTiernan A. The effect of CYP19 and COMT polymorphisms on exercise-induced fat loss in postmenopausal women. Obes Res. 2004;12(6):972–81.

    CAS  PubMed  Google Scholar 

  135. Hart MN, Heistad DD, Brody MJ. Effect of chronic hypertension and sympathetic denervation on wall/lumen ratio of cerebral vessels. Hypertension. 1980;2(4):419–23.

    CAS  PubMed  Google Scholar 

  136. Pauletto P, Scannapieco G, Pessina AC. Sympathetic drive and vascular damage in hypertension and atherosclerosis. Hypertension. 1991;17(4 Suppl):III75–81.

    CAS  PubMed  Google Scholar 

  137. Worda C, Sator MO, Schneeberger C, Jantschev T, Ferlitsch K, Huber JC. Influence of the catechol-O-methyltransferase (COMT) codon 158 polymorphism on estrogen levels in women. Hum Reprod. 2003;18(2):262–6.

    CAS  PubMed  Google Scholar 

  138. Dinenno FA, Jones PP, Seals DR, Tanaka H. Age-associated arterial wall thickening is related to elevations in sympathetic activity in healthy humans. Am J Physiol Heart Circ Physiol. 2000;278(4):H1205–10.

    CAS  PubMed  Google Scholar 

  139. Bauch HJ, Grünwald J, Vischer P, Gerlach U, Hauss WH. A possible role of catecholamines in atherogenesis and subsequent complications of atherosclerosis. Exp Pathol. 1987;31(4):193–204.

    CAS  PubMed  Google Scholar 

  140. Zacharia LC, Jackson EK, Gillespie DG, Dubey RK. Catecholamines abrogate the anti-mitogenic effects of 2-hydroxyestradiol on human aortic vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2001;21(11):1745–50.

    CAS  PubMed  Google Scholar 

  141. Dubey RK, Zacharia LC, Gillespie DG, Imthurn B, Jackson EK. Catecholamines block the antimitogenic effect of estradiol on human glomerular mesangial cells. Hypertension. 2003;42(3):349–55. Epub 2003 Aug 11.

    CAS  PubMed  Google Scholar 

  142. Lloyd T, Weisz J. Direct inhibition of tyrosine hydroxylase activity by catechol estrogens. J Biol Chem. 1978;253(14):4841–3.

    CAS  PubMed  Google Scholar 

  143. Sudhir K, Elser MD, Jennings GL, Komesaroff PA. Estrogen supplementation decreases norepinephrine-induced vasoconstriction and total body norepinephrine spillover in perimenopausal women. Hypertension. 1997;30(6):1538–43.

    CAS  PubMed  Google Scholar 

  144. Komesaroff PA, Esler MD, Sudhir K. Estrogen supplementation attenuates glucocorticoid and catecholamine responses to mental stress in perimenopausal women. J Clin Endocrinol Metab. 1999;84(2):606–10.

    CAS  PubMed  Google Scholar 

  145. Ceresini G, Freddi M, Morganti S, Rebecchi I, Modena AB, Rinaldi M, Manca C, Amaducci A, Del Rio G, Valenti G. The effects of transdermal estradiol on the response to mental stress in postmenopausal women: a randomized trial. Am J Med. 2000;109(6):463–8.

    CAS  PubMed  Google Scholar 

  146. Menozzi R, et al. Sympathoadrenal response of postmenopausal women prior and during prolonged administration of estradiol. Maturitas. 2000;34:275–28.

    CAS  PubMed  Google Scholar 

  147. Wang PN, Liu HC, Liu TY, Chu A, Hong CJ, Lin KN, Chi CW. Estrogen-metabolizing gene COMT polymorphism synergistic APOE epsilon4 allele increases the risk of Alzheimer disease. Dement Geriatr Cogn Disord. 2005;19(2–3):120–5. Epub 2004 Dec 9.

    CAS  PubMed  Google Scholar 

  148. Rothe C, Koszycki D, Bradwejn J, King N, Deluca V, Tharmalingam S, Macciardi F, Deckert J, Kennedy JL. Association of the Val158Met catechol-O-methyltransferase genetic polymorphism with panic disorder. Neuropsychopharmacology. 2006;31(10):2237–42. Epub 2006 Mar 8.

    CAS  PubMed  Google Scholar 

  149. Colilla S, Lerman C, Shields PG, Jepson C, Rukstalis M, Berlin J, DeMichele A, Bunin G, Strom BL, Rebbeck TR. Association of catechol-O-methyltransferase with smoking cessation in two independent studies of women. Pharmacogenet Genomics. 2005;15(6):393–8.

    CAS  PubMed  Google Scholar 

  150. Weinshilboum RM, Otterness DM, Aksoy IA, Wood TC, Her C, Raftogianis RB. Sulfation and sulfotransferases 1: Sulfotransferase molecular biology: cDNAs and genes. FASEB J. 1997;11(1):3–14.

    CAS  PubMed  Google Scholar 

  151. Adjei AA, Weinshilboum RM. Catecholestrogen sulfation: possible role in carcinogenesis. Biochem Biophys Res Commun. 2002;292(2):402–8.

    CAS  PubMed  Google Scholar 

  152. Aksoy IA, Wood TC, Weinshilboum R. Human liver estrogen sulfotransferase: identification by cDNA cloning and expression. Biochem Biophys Res Commun. 1994;200(3):1621–9.

    CAS  PubMed  Google Scholar 

  153. Falany JL, Falany CN. Expression of cytosolic sulfotransferases in normal mammary epithelial cells and breast cancer cell lines. Cancer Res. 1996;56(7):1551–5.

    CAS  PubMed  Google Scholar 

  154. Hernández JS, Watson RW, Wood TC, Weinshilboum RM. Sulfation of estrone and 17 beta-estradiol in human liver. Catalysis by thermostable phenol sulfotransferase and by dehydroepiandrosterone sulfotransferase. Drug Metab Dispos. 1992;20(3):413–22.

    PubMed  Google Scholar 

  155. Falany JL, Lawing L, Falany CN. Identification and characterization of cytosolic sulfotransferase activities in MCF-7 human breast carcinoma cells. J Steroid Biochem Mol Biol. 1993;46(4):481–7.

    CAS  PubMed  Google Scholar 

  156. Sharp S, Anderson JM, Coughtrie MW. Immunohistochemical localisation of hydroxysteroid sulphotransferase in human breast carcinoma tissue: a preliminary study. Eur J Cancer. 1994;30A(11):1654–9.

    CAS  PubMed  Google Scholar 

  157. Falany CN, Wheeler J, Oh TS, Falany JL. Steroid sulfation by expressed human cytosolic sulfotransferases. J Steroid Biochem Mol Biol. 1994;48(4):369–75.

    CAS  PubMed  Google Scholar 

  158. Spink BC, Katz BH, Hussain MM, Pang S, Connor SP, Aldous KM, Gierthy JF, Spink DC. SULT1A1 catalyzes 2-methoxyestradiol sulfonation in MCF-7 breast cancer cells. Carcinogenesis. 2000;21(11):1947–57.

    CAS  PubMed  Google Scholar 

  159. Raftogianis RB, Wood TC, Otterness DM, Van Loon JA, Weinshilboum RM. Phenol sulfotransferase pharmacogenetics in humans: association of common SULT1A1 alleles with TS PST phenotype. Biochem Biophys Res Commun. 1997;239(1):298–304.

    CAS  PubMed  Google Scholar 

  160. Raftogianis RB, Wood TC, Weinshilboum RM. Human phenol sulfotransferases SULT1A2 and SULT1A1: genetic polymorphisms, allozyme properties, and human liver genotype–phenotype correlations. Biochem Pharmacol. 1999;58(4):605–16.

    CAS  PubMed  Google Scholar 

  161. Carlini EJ, Raftogianis RB, Wood TC, Jin F, Zheng W, Rebbeck TR, Weinshilboum RM. Sulfation pharmacogenetics: SULT1A1 and SULT1A2 allele frequencies in Caucasian, Chinese and African-American subjects. Pharmacogenetics. 2001;11(1):57–68.

    CAS  PubMed  Google Scholar 

  162. Seth P, Lunetta KL, Bell DW, Gray H, Nasser SM, Rhei E, Kaelin CM, Iglehart DJ, Marks JR, Garber JE, Haber DA, Polyak K. Phenol sulfotransferases: hormonal regulation, polymorphism, and age of onset of breast cancer. Cancer Res. 2000;60(24):6859–63.

    CAS  PubMed  Google Scholar 

  163. Langsenlehner U, Krippl P, Renner W, Yazdani-Biuki B, Eder T, Wolf G, Wascher TC, Paulweber B, Weitzer W, Samonigg H. Genetic variants of the sulfotransferase 1A1 and breast cancer risk. Breast Cancer Res Treat. 2004;87(1):19–22.

    CAS  PubMed  Google Scholar 

  164. Zheng W, Xie D, Cerhan JR, Sellers TA, Wen W, Folsom AR. Sulfotransferase 1A1 polymorphism, endogenous estrogen exposure, well-done meat intake, and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2001;10(2):89–94.

    PubMed  Google Scholar 

  165. Tang D, Rundle A, Mooney L, Cho S, Schnabel F, Estabrook A, Kelly A, Levine R, Hibshoosh H, Perera F. Sulfotransferase 1A1 (SULT1A1) polymorphism, PAH-DNA adduct levels in breast tissue and breast cancer risk in a case–control study. Breast Cancer Res Treat. 2003;78(2):217–22.

    CAS  PubMed  Google Scholar 

  166. Lépine J, Bernard O, Plante M, Têtu B, Pelletier G, Labrie F, Bélanger A, Guillemette C. Specificity and regioselectivity of the conjugation of estradiol, estrone, and their catecholestrogen and methoxyestrogen metabolites by human uridine diphospho-glucuronosyltransferases expressed in endometrium. J Clin Endocrinol Metab. 2004;89(10):5222–32.

    PubMed  Google Scholar 

  167. Ebner T, Remmel RP, Burchell B. Human bilirubin UDP-glucuronosyltransferase catalyzes the glucuronidation of ethinylestradiol. Mol Pharmacol. 1993;43(4):649–54.

    CAS  PubMed  Google Scholar 

  168. Ritter JK, Chen F, Sheen YY, Tran HM, Kimura S, Yeatman MT, Owens IS. A novel complex locus UGT1 encodes human bilirubin, phenol, and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini. J Biol Chem. 1992;267(5):3257–61.

    CAS  PubMed  Google Scholar 

  169. Guillemette C, Millikan RC, Newman B, Housman DE. Genetic polymorphisms in uridine diphospho-glucuronosyltransferase 1A1 and association with breast cancer among African Americans. Cancer Res. 2000;60(4):950–6.

    CAS  PubMed  Google Scholar 

  170. UGP Glucuronosyltransferase Homepage [http://som.flinders.edu.au/FUSA/ClinPharm/UGT/1A1alleles.html]

  171. Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, Oostra BA, Lindhout D, Tytgat GN, Jansen PL, Oude Elferink RP, et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med. 1995;333(18):1171–5.

    CAS  PubMed  Google Scholar 

  172. Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Bélanger A, Fournel-Gigleux S, Green M, Hum DW, Iyanagi T, Lancet D, Louisot P, Magdalou J, Chowdhury JR, Ritter JK, Schachter H, Tephly TR, Tipton KF, Nebert DW. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics. 1997;7(4):255–69.

    CAS  PubMed  Google Scholar 

  173. Beutler E, Gelbart T, Demina A. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc Natl Acad Sci U S A. 1998;95(14):8170–4.

    CAS  PubMed  Google Scholar 

  174. Iolascon A, Faienza MF, Centra M, Storelli S, Zelante L, Savoia A. (TA)8 allele in the UGT1A1 gene promoter of a Caucasian with Gilbert’s syndrome. Haematologica. 1999;84(2):106–9.

    CAS  PubMed  Google Scholar 

  175. Guillemette C, De Vivo I, Hankinson SE, Haiman CA, Spiegelman D, Housman DE, Hunter DJ. Association of genetic polymorphisms in UGT1A1 with breast cancer and plasma hormone levels. Cancer Epidemiol Biomarkers Prev. 2001;10(6):711–4.

    CAS  PubMed  Google Scholar 

  176. Fisher MB, Vandenbranden M, Findlay K, Burchell B, Thummel KE, Hall SD, Wrighton SA. Tissue distribution and interindividual variation in human UDP-glucuronosyltransferase activity: relationship between UGT1A1 promoter genotype and variability in a liver bank. Pharmacogenetics. 2000;10(8):727–39.

    CAS  PubMed  Google Scholar 

  177. Adegoke OJ, Shu XO, Gao YT, Cai Q, Breyer J, Smith J, Zheng W. Genetic polymorphisms in uridine diphospho-glucuronosyltransferase 1A1 (UGT1A1) and risk of breast cancer. Breast Cancer Res Treat. 2004;85(3):239–45.

    CAS  PubMed  Google Scholar 

  178. Sparks R, Ulrich CM, Bigler J, Tworoger SS, Yasui Y, Rajan KB, Porter P, Stanczyk FZ, Ballard-Barbash R, Yuan X, Lin MG, McVarish L, Aiello EJ, McTiernan A. UDP-glucuronosyltransferase and sulfotransferase polymorphisms, sex hormone concentrations, and tumor receptor status in breast cancer patients. Breast Cancer Res. 2004;6(5):R488–98. Epub 2004 Jun 29.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes C. Huber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Huber, J.C., Tempfer-Bentz, EK., Ott, J., Tempfer, C.B. (2009). Estrogen-Metabolizing Gene Polymorphisms, Genetic Susceptibility, and Pharmacogenomics. In: Welcsh, P. (eds) The Role of Genetics in Breast and Reproductive Cancers. Cancer Genetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0477-5_13

Download citation

Publish with us

Policies and ethics