Skip to main content

How Images of Objects Are Represented in Macaque Inferotemporal Cortex

  • Chapter
  • First Online:
  • 898 Accesses

Abstract

Visual object recognition is a simple and easy task in our daily life. However, the mechanisms for recognizing objects are not at all simple nor easy. To understand neural mechanisms of object recognition, we have investigated representation of object images in macaque inferior temporal cortex that is the area essential for object recognition. Optical intrinsic signal imaging has revealed that object images are represented by the combinatorial code at the columnar level, where each column represents a visual feature of object images. The visual features represented by columns include local features as well as global features representing spatial arrangements of local features. Here, columns are supposed to be functional units for object representation. However, difference in object selectivity among nearby cells does not support the concept of columns as the functional units. Quantitative analysis of object responses of single cells and population activity revealed that each cell in a columnar region is characterized by cell specific property and property common across the cells in the columnar region, suggesting two different levels (single cell and columnar level) of object representation. Possible role of these two levels of object representation will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baylis GC, Rolls ET, Leonard CM (1985) Selectivity between faces in the responses of a population of neurons in the cortex in the superior temporal sulcus of the monkey. Brain Res 342(1):91–102

    Article  CAS  PubMed  Google Scholar 

  • Brincat SL, Connor CE (2004) Underlying principles of visual shape selectivity in posterior inferotemporal cortex. Nat Neurosci 7:880–886

    Article  CAS  PubMed  Google Scholar 

  • Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46(2):369–384

    CAS  PubMed  Google Scholar 

  • Das A, Gilbert CD (1995) Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex. Nature 375:780–784

    Article  CAS  PubMed  Google Scholar 

  • deCharms RC, Blake DT, Merzenich MM (1999) A multielectrode implant device for the cerebral cortex. J Neurosci Methods 93:27–35

    Article  Google Scholar 

  • Desimone R, Albright TD, Gross CG, Bruce C (1984) Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci 4(8):2051–2062

    CAS  PubMed  Google Scholar 

  • Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex. Nature 360(6402):343–346

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M, Rajagopalan UM, Homma R, Matsumoto M, Nishizaki M, Tanifuji M (2005) Localization of activity-dependent changes in blood volume to submilimeter-scale functional domains in cat visual cortex. Cereb Cortex 15(6):823–833

    Article  PubMed  Google Scholar 

  • Grinvald A, Shoham D, Shmuel A, Glaser D, Vanzetta I, Shtoyerman E, Slovin H, Wijnbergen C, Hildesheim R, Arieli A (1999) In-vivo optical imaging of cortical architecture and dynamics. In: Windhorst U and Johansson H (eds) Modern techniques in neuroscience research. Springer, Berlin Heidelberg New York pp. 893–970

    Google Scholar 

  • Gross CG (1994) How inferior temporal cortex became a visual area. Cereb Cortex 5:455–469

    Article  Google Scholar 

  • Gross CG, Bender DB, Gerstein GL (1979) Activity of inferior temporal neurons in behaving monkeys. Neuropsychology 17:215–229

    Article  CAS  Google Scholar 

  • Homma R, Tanifuji M (2003) Comparison of functional MAPs in macaque area TE revealed by in vivo optical imaging with voltage-sensitive dye and intrinsic signal imaging. Abstr. viewer/Itinerary Planner. Society for Neuroscience, Washington, DC. 818.21

    Google Scholar 

  • Kobatake E, Tanaka K (1994) Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J Neurophysiol 71(3):856–867

    CAS  PubMed  Google Scholar 

  • Kobatake E, Wang G, Tanaka K (1998) Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. J Neurophysiol 80(1):324–330

    CAS  PubMed  Google Scholar 

  • Kreiman G, Hung CP, Kraskov A, Quiroga RQ, Poggio T, DiCarlo JJ (2006) Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex. Neuron 49:433–445

    Article  CAS  PubMed  Google Scholar 

  • MacVicar BA, Hockman D (1991) Imaging of synaptically evoked intrinsic optical signals in hippocampal slices. J Neurosci 11:1458–1469

    CAS  PubMed  Google Scholar 

  • Miyakawa N, Vidal-Naquet M, Blake D, Merzenich M, Tanifuji M (2007). Activities from combination of columns in macaque area TE can encode object identity across viewing angles, Abstr. viewer/Itinerary Planner. Society for Neuroscience, San Diego. Online, 554.11.

    Google Scholar 

  • Perrett DI, Rolls ET, Caan W (1982) Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res 47(3):329–342

    Article  CAS  PubMed  Google Scholar 

  • Perrett DI, Oram MW, Harries MH, Bevan R, Hietanen JK, Benson PJ, Thomas S (1991) Viewer-centred and object-centred coding of heads in the macaque temporal cortex. Exp Brain Res 86(1):159–173

    Article  CAS  PubMed  Google Scholar 

  • Perrett DI, Smith PA, Potter DD, Mistlin AJ, Head AS, Milner AD, Jeeves MA (1984) Neurones responsive to faces in the temporal cortex: studies of functional organization, sensitivity to identity and relation to perception. Hum Neurobiol 3(4):197–208

    CAS  PubMed  Google Scholar 

  • Reynolds JH, Chelazzi L, Desimone R (1999) Competitive mechanisms subserve attention in macaque areas V2 and V4. J Neurosci 19:1736–1753

    CAS  PubMed  Google Scholar 

  • Rolls ET, Tovee MJ (1995) Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. J Neurophysiol 73:713–726

    CAS  PubMed  Google Scholar 

  • Sato T, Uchida G, Tanifuji M (2009) Cortical columnar organization is reconsidered in intorial tempral cortex. Coreb Corlex 19:1870–1880

    Article  Google Scholar 

  • Tamura H, Kaneko H, Fujita I (2005) Quantitative analysis of functional clustering of neurons in the macaque inferior temporal cortex. Neurosci Res 52:311–322

    Article  PubMed  Google Scholar 

  • Tanaka K, Saito H, Fukada Y, Moriya M (1991) Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J Neurophysiol 66(1):170–189

    CAS  PubMed  Google Scholar 

  • Tsunoda K, Oguchi Y, Hanazono G, Tanifuji M (2004) Mapping cone- and rod-induced retinal responsiveness in macaque retina by optical imaging. Invest Ophthalmol Vis Sci 45(10):3820–3826

    Article  PubMed  Google Scholar 

  • Tsunoda K, Yamane Y, Nishizaki M, Tanifuji M (2001) Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat Neurosci 4(8):832–838

    Article  CAS  PubMed  Google Scholar 

  • Vanzetta I, Grinvald A (1999) Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science 286(5444):1555–1558

    Article  CAS  PubMed  Google Scholar 

  • Vanzetta I, Solvin H, Omer DB, Grinvald A (2004) Columnar resolution of blood volume and oximetry functional maps in the behaving monkey; implications for fMRI. Neuron 42(5):843–854

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Tanaka K, Tanifuji M (1996) Optical imaging of functional organization in the monkey inferotemporal cortex. Science 272(5268):1665–1668

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Tanifuji M, Tanaka K (1998) Functional architecture in monkey inferotemporal cortex revealed by in vivo optical imaging. Neurosci Res 32(1):33–46

    Article  CAS  PubMed  Google Scholar 

  • Yarbus AL (1967) Eye movements and vision. Plenum Press, New York

    Google Scholar 

  • Yamane S, Kaji S, Kawano K (1988) What facial features activate face neurons in the inferotemporal cortex of the monkey? Exp Brain Res 73(1):209–214

    Article  CAS  PubMed  Google Scholar 

  • Yamane Y, Tsunoda K, Matsumoto M, Phillips AN, Tanifuji M (2006) Representation of the spatial relationship among object parts by neruons in macaque inferotemporal cortex. J Neurophysiol 96:3147–3156

    Article  PubMed  Google Scholar 

  • Yen S-C, Baker J, Gray CM (2007) Heterogeneity in the Responses of adjacent neurons to natural stimuli in cat striate cortex. J Neurophysiol 97:1326–1341

    Article  PubMed  Google Scholar 

  • Young MP, Yamane S (1992) Sparse population coding of faces in the inferotemporal cortex. Science 256(5061):1327–1331

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Tanifuji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tanifuji, M., Sato, T., Uchida, G., Yamane, Y., Tsunoda, K. (2009). How Images of Objects Are Represented in Macaque Inferotemporal Cortex. In: Roe, A. (eds) Imaging the Brain with Optical Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0452-2_5

Download citation

Publish with us

Policies and ethics