Glioblastoma pp 185-202 | Cite as

Aberrations of the Epigenome in Gliomas: Novel Targets for Therapy

Chapter

Abstract

Abstract Aberrations in the epigenetic machinery of the genome result in inactivation of critical genes and are important mechanisms in the evolution of malignancies that not only contributes to tumorigenesis but may also precede genetic changes. Several such epigenetic mechanisms have been observed in gliomas including DNA hypermethylation at the promoter or the coding regions of genes, histone modifications including methylation and acetylation, nucleosomal rearrangement, and dysregulation of noncoding RNA expression; these changes have been shown to play a critical role in the biology of gliomas and to contribute to the clinical outcome. This review examines the general role of epigenetic changes in the malignant process and focuses on the known changes in gene expression in gliomas due to epigenetic modifications, both in the context of gliomagenesis and in the development of new therapeutic strategies against these malignancies.

Keywords

Epigenetic machinery Glioma Histone modifications New therapeutics 

References

  1. Alonso ME et al (2004) Aberrant CpG island methylation of multiple genes in ependymal tumors. J Neurooncol 67:159–165CrossRefPubMedGoogle Scholar
  2. Amatya VJ et al (2005) TP53 promoter methylation in human gliomas. Acta Neuropathol 110:178–184CrossRefPubMedGoogle Scholar
  3. Baeza N et al (2003) PTEN methylation and expression in glioblastomas. Acta Neuropathol 106:479–485CrossRefPubMedGoogle Scholar
  4. Baylin SB, Chen WY (2005) Aberrant gene silencing in tumor progression: Implications for control of cancer. Cold Spring Harb Symp Quant Biol 70:427–433CrossRefPubMedGoogle Scholar
  5. Bejerano G et al (2004) Ultraconserved elements in the human genome. Science 304:1321–1325CrossRefPubMedGoogle Scholar
  6. Bentwich I et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770CrossRefPubMedGoogle Scholar
  7. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213CrossRefPubMedGoogle Scholar
  8. Bjornsson HT et al (2004) An integrated epigenetic and genetic approach to common human disease. Trends Genet 20:350–358CrossRefPubMedGoogle Scholar
  9. Bobola MS et al (1995a) Contribution of O6-methylguanine-DNA methyltransferase to monofunctional alkylating-agent resistance in human brain tumor-derived cell lines. Mol Carcinog 13:70–80CrossRefPubMedGoogle Scholar
  10. Bobola MS et al (1995b) Contribution of O6-methylguanine-DNA methyltransferase to resistance to 1, 3-(2-chloroethyl)-1-nitrosourea in human brain tumor-derived cell lines. Mol Carcinog 13:81–88CrossRefPubMedGoogle Scholar
  11. Bobola MS et al (1996) Role of O6-methylguanine-DNA methyltransferase in resistance of human brain tumor cell lines to the clinically relevant methylating agents temozolomide and streptozotocin. Clin Cancer Res 2:735–741PubMedGoogle Scholar
  12. Dallol A et al (2003) Frequent epigenetic inactivation of the SLIT2 gene in gliomas. Oncogene 22:4611–4616CrossRefPubMedGoogle Scholar
  13. Davie JR (1998) Covalent modifications of histones: Expression from chromatin templates. Curr Opin Genet Dev 8:173–178CrossRefPubMedGoogle Scholar
  14. Dong SM et al (2001) Concurrent hypermethylation of multiple genes is associated with grade of oligodendroglial tumors. J Neuropathol Exp Neurol 60:808–816PubMedGoogle Scholar
  15. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159CrossRefPubMedGoogle Scholar
  16. Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440CrossRefPubMedGoogle Scholar
  17. Foltz G et al (2006) Genome-wide analysis of epigenetic silencing identifies BEX1 and BEX2 as candidate tumor suppressor genes in malignant glioma. Cancer Res 66:6665–6674CrossRefPubMedGoogle Scholar
  18. Fukushima T et al (2005) Promoter hypermethylation of mismatch repair gene hMLH1 predicts the clinical response of malignant astrocytomas to nitrosourea. Clin Cancer Res 11:1539–1544CrossRefPubMedGoogle Scholar
  19. Galanis EJ et al (2007) N047B: NCCTG phase II trial of vorinostat (suberoylanilide hydroxamic acid) in recurrent glioblastoma multiforme (GBM). J Clin Oncol 25Google Scholar
  20. Gonzalez-Gomez P et al (2003) Promoter hypermethylation of multiple genes in astrocytic gliomas. Int J Oncol 22:601–608PubMedGoogle Scholar
  21. Grasbon-Frodl EM et al (2007) Intratumoral homogeneity of MGMT promoter hypermethylation as demonstrated in serial stereotactic specimens from anaplastic astrocytomas and glioblastomas. Int J Cancer 121:2458–2464CrossRefPubMedGoogle Scholar
  22. Hamilton DW et al (2005) Epigenetic inactivation of the RASSF1A tumour suppressor gene in ependymoma. Cancer Lett 227:75–81CrossRefPubMedGoogle Scholar
  23. Hebbes TR et al (1988) A direct link between core histone acetylation and transcriptionally active chromatin. Embo J 7:1395–1402PubMedGoogle Scholar
  24. Hegi ME et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003CrossRefPubMedGoogle Scholar
  25. Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18:6538–6547PubMedGoogle Scholar
  26. Hong C et al (2005) Shared epigenetic mechanisms in human and mouse gliomas inactivate expression of the growth suppressor SLC5A8. Cancer Res 65:3617–3623CrossRefPubMedGoogle Scholar
  27. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080CrossRefPubMedGoogle Scholar
  28. Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070CrossRefPubMedGoogle Scholar
  29. Jones PL et al (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19:187–191CrossRefPubMedGoogle Scholar
  30. Kaminskas E et al (2005) Approval summary: Azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 11:3604–3608CrossRefPubMedGoogle Scholar
  31. Kanamori M et al (2000) Microsatellite instability and the PTEN1 gene mutation in a subset of early onset gliomas carrying germline mutation or promoter methylation of the hMLH1 gene. Oncogene 19:1564–1571CrossRefPubMedGoogle Scholar
  32. Kawaji H, Hayashizaki Y (2008) Exploration of small RNAs. PLoS Genet 4:e22CrossRefPubMedGoogle Scholar
  33. Knobbe CB et al (2004) Hypermethylation and transcriptional downregulation of the carboxyl-terminal modulator protein gene in glioblastomas. J Natl Cancer Inst 96:483–486CrossRefPubMedGoogle Scholar
  34. Lagos-Quintana M et al (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858CrossRefPubMedGoogle Scholar
  35. Lee DY et al (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72:73–84CrossRefPubMedGoogle Scholar
  36. Li E et al (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365CrossRefPubMedGoogle Scholar
  37. Mann BS et al (2007) FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T cell lymphoma. Oncologist 12:1247–1252CrossRefPubMedGoogle Scholar
  38. Marks PA et al (2004) Histone deacetylase inhibitors: Development as cancer therapy. Novartis Found Symp 259:269–281; discussion 281–268Google Scholar
  39. Martinez R et al (2007) Hypermethylation of the proapoptotic gene TMS1/ASC: Prognostic importance in glioblastoma multiforme. J Neurooncol 82:133–139CrossRefPubMedGoogle Scholar
  40. Michalowski MB et al (2006) Methylation of RASSF1A and TRAIL pathway-related genes is frequent in childhood intracranial ependymomas and benign choroid plexus papilloma. Cancer Genet Cytogenet 166:74–81CrossRefPubMedGoogle Scholar
  41. Nakajima H et al (1998) FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res 241:126–133CrossRefPubMedGoogle Scholar
  42. Ng HH et al (1999) MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 23:58–61PubMedGoogle Scholar
  43. Nguyen CT et al (2001) Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: Correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res 29:4598–4606CrossRefPubMedGoogle Scholar
  44. Ohgaki H (2005) Genetic pathways to glioblastomas. Neuropathology 25:1–7CrossRefPubMedGoogle Scholar
  45. Ostrowski LE et al (1991) Expression of O6-methylguanine-DNA methyltransferase in malignant human glioma cell lines. Carcinogenesis 12:1739–1744CrossRefPubMedGoogle Scholar
  46. Park YS et al (2008) The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol 15:1968–1976CrossRefPubMedGoogle Scholar
  47. Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173CrossRefPubMedGoogle Scholar
  48. Pieper RO et al (1990) Comparison of O-6-methylguanine DNA methyltransferase (MGMT) mRNA levels in Mer+ and Mer– human tumor cell lines containing the MGMT gene by the polymerase chain reaction technique. Cancer Commun 2:13–20PubMedGoogle Scholar
  49. Pieper RO et al (1991) Direct correlation between methylation status and expression of the human O-6-methylguanine DNA methyltransferase gene. Cancer Commun 3:241–253PubMedGoogle Scholar
  50. Qian X et al (1995) Localization of methylation sites in the human O6-methylguanine-DNA methyltransferase promoter: Correlation with gene suppression. Carcinogenesis 16:1385–1390CrossRefPubMedGoogle Scholar
  51. Richon VM et al (2001) Histone deacetylase inhibitors: Development of suberoylanilide hydroxamic acid (SAHA) for the treatment of cancers. Blood Cells Mol Dis 27:260–264CrossRefPubMedGoogle Scholar
  52. Rousseau E et al (2003) CDKN2A, CDKN2B and p14ARF are frequently and differentially methylated in ependymal tumours. Neuropathol Appl Neurobiol 29:574–583CrossRefPubMedGoogle Scholar
  53. Rydberg B et al (1990) cDNA cloning and chromosomal assignment of the human O6-methylguanine-DNA methyltransferase. cDNA expression in Escherichia coli and gene expression in human cells. J Biol Chem 265:9563–9569PubMedGoogle Scholar
  54. Schneider-Stock R, Ocker M (2007) Epigenetic therapy in cancer: Molecular background and clinical development of histone deacetylase and DNA methyltransferase inhibitors. IDrugs 10:557–561PubMedGoogle Scholar
  55. Seligson DB et al (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:1262–1266CrossRefPubMedGoogle Scholar
  56. Shah MH et al (2006) Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin Cancer Res 12:3997–4003CrossRefPubMedGoogle Scholar
  57. Sigalotti L et al (2007) Epigenetic drugs as pleiotropic agents in cancer treatment: Biomolecular aspects and clinical applications. J Cell Physiol 212:330–344CrossRefPubMedGoogle Scholar
  58. Stone AR et al (2004) Aberrant methylation and down-regulation of TMS1/ASC in human glioblastoma. Am J Pathol 165:1151–1161PubMedGoogle Scholar
  59. Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMedGoogle Scholar
  60. Tano K et al (1990) Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for O6-alkylguanine. Proc Natl Acad Sci USA 87:686–690CrossRefPubMedGoogle Scholar
  61. Ting AH et al (2006) The cancer epigenome – components and functional correlates. Genes Dev 20:3215–3231CrossRefPubMedGoogle Scholar
  62. von Wronski MA, Brent TP (1994) Effect of 5-azacytidine on expression of the human DNA repair enzyme O6-methylguanine-DNA methyltransferase. Carcinogenesis 15:577–582CrossRefGoogle Scholar
  63. Waha A et al (2004) Analysis of HIC-1 methylation and transcription in human ependymomas. Int J Cancer 110:542–549CrossRefPubMedGoogle Scholar
  64. Watanabe T et al (2001) Promoter hypermethylation and homozygous deletion of the p14ARF and p16INK4a genes in oligodendrogliomas. Acta Neuropathol 101:185–189PubMedGoogle Scholar
  65. Watanabe T et al (2002) Methylation of the p73 gene in gliomas. Acta Neuropathol 104:357–362PubMedGoogle Scholar
  66. Weinhold B (2006) Epigenetics: The science of change. Environ Health Perspect 114:A160–A167CrossRefPubMedGoogle Scholar
  67. Wiencke JK et al (2007) Methylation of the PTEN promoter defines low-grade gliomas and secondary glioblastoma. Neuro Oncol 9:271–279CrossRefPubMedGoogle Scholar
  68. Wolfgang WW, Weller M, Neurooncology Working Group of the German Cancer Societ (2008). Randomized phase III study of sequential radiochemotherapy of oligoastrocytic tumors of WHO-grade III with PCV or temozolomide: NOA-04. J Clin Oncol 26: May 20 suppl; abstr LBA2007Google Scholar
  69. Wolter M et al (2001) Oligodendroglial tumors frequently demonstrate hypermethylation of the CDKN2A (MTS1, p16INK4a), p14ARF, and CDKN2B (MTS2, p15INK4b) tumor suppressor genes. J Neuropathol Exp Neurol 60:1170–1180PubMedGoogle Scholar
  70. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360CrossRefPubMedGoogle Scholar
  71. Zysman MA et al (2002) Considerations when analyzing the methylation status of PTEN tumor suppressor gene. Am J Pathol 160:795–800PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.Department of Neuro-Oncology Brain Tumor CenterUniversity of Texas M.D. Anderson Cancer CenterHoustonUSA

Personalised recommendations