Skip to main content

Aberrations of the Epigenome in Gliomas: Novel Targets for Therapy

  • Chapter
  • First Online:
Glioblastoma
  • 1761 Accesses

Abstract

Abstract Aberrations in the epigenetic machinery of the genome result in inactivation of critical genes and are important mechanisms in the evolution of malignancies that not only contributes to tumorigenesis but may also precede genetic changes. Several such epigenetic mechanisms have been observed in gliomas including DNA hypermethylation at the promoter or the coding regions of genes, histone modifications including methylation and acetylation, nucleosomal rearrangement, and dysregulation of noncoding RNA expression; these changes have been shown to play a critical role in the biology of gliomas and to contribute to the clinical outcome. This review examines the general role of epigenetic changes in the malignant process and focuses on the known changes in gene expression in gliomas due to epigenetic modifications, both in the context of gliomagenesis and in the development of new therapeutic strategies against these malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso ME et al (2004) Aberrant CpG island methylation of multiple genes in ependymal tumors. J Neurooncol 67:159–165

    Article  PubMed  Google Scholar 

  • Amatya VJ et al (2005) TP53 promoter methylation in human gliomas. Acta Neuropathol 110:178–184

    Article  CAS  PubMed  Google Scholar 

  • Baeza N et al (2003) PTEN methylation and expression in glioblastomas. Acta Neuropathol 106:479–485

    Article  CAS  PubMed  Google Scholar 

  • Baylin SB, Chen WY (2005) Aberrant gene silencing in tumor progression: Implications for control of cancer. Cold Spring Harb Symp Quant Biol 70:427–433

    Article  CAS  PubMed  Google Scholar 

  • Bejerano G et al (2004) Ultraconserved elements in the human genome. Science 304:1321–1325

    Article  CAS  PubMed  Google Scholar 

  • Bentwich I et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770

    Article  CAS  PubMed  Google Scholar 

  • Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    Article  CAS  PubMed  Google Scholar 

  • Bjornsson HT et al (2004) An integrated epigenetic and genetic approach to common human disease. Trends Genet 20:350–358

    Article  CAS  PubMed  Google Scholar 

  • Bobola MS et al (1995a) Contribution of O6-methylguanine-DNA methyltransferase to monofunctional alkylating-agent resistance in human brain tumor-derived cell lines. Mol Carcinog 13:70–80

    Article  CAS  PubMed  Google Scholar 

  • Bobola MS et al (1995b) Contribution of O6-methylguanine-DNA methyltransferase to resistance to 1, 3-(2-chloroethyl)-1-nitrosourea in human brain tumor-derived cell lines. Mol Carcinog 13:81–88

    Article  CAS  PubMed  Google Scholar 

  • Bobola MS et al (1996) Role of O6-methylguanine-DNA methyltransferase in resistance of human brain tumor cell lines to the clinically relevant methylating agents temozolomide and streptozotocin. Clin Cancer Res 2:735–741

    CAS  PubMed  Google Scholar 

  • Dallol A et al (2003) Frequent epigenetic inactivation of the SLIT2 gene in gliomas. Oncogene 22:4611–4616

    Article  CAS  PubMed  Google Scholar 

  • Davie JR (1998) Covalent modifications of histones: Expression from chromatin templates. Curr Opin Genet Dev 8:173–178

    Article  CAS  PubMed  Google Scholar 

  • Dong SM et al (2001) Concurrent hypermethylation of multiple genes is associated with grade of oligodendroglial tumors. J Neuropathol Exp Neurol 60:808–816

    CAS  PubMed  Google Scholar 

  • Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  CAS  PubMed  Google Scholar 

  • Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440

    Article  CAS  PubMed  Google Scholar 

  • Foltz G et al (2006) Genome-wide analysis of epigenetic silencing identifies BEX1 and BEX2 as candidate tumor suppressor genes in malignant glioma. Cancer Res 66:6665–6674

    Article  CAS  PubMed  Google Scholar 

  • Fukushima T et al (2005) Promoter hypermethylation of mismatch repair gene hMLH1 predicts the clinical response of malignant astrocytomas to nitrosourea. Clin Cancer Res 11:1539–1544

    Article  CAS  PubMed  Google Scholar 

  • Galanis EJ et al (2007) N047B: NCCTG phase II trial of vorinostat (suberoylanilide hydroxamic acid) in recurrent glioblastoma multiforme (GBM). J Clin Oncol 25

    Google Scholar 

  • Gonzalez-Gomez P et al (2003) Promoter hypermethylation of multiple genes in astrocytic gliomas. Int J Oncol 22:601–608

    CAS  PubMed  Google Scholar 

  • Grasbon-Frodl EM et al (2007) Intratumoral homogeneity of MGMT promoter hypermethylation as demonstrated in serial stereotactic specimens from anaplastic astrocytomas and glioblastomas. Int J Cancer 121:2458–2464

    Article  CAS  PubMed  Google Scholar 

  • Hamilton DW et al (2005) Epigenetic inactivation of the RASSF1A tumour suppressor gene in ependymoma. Cancer Lett 227:75–81

    Article  CAS  PubMed  Google Scholar 

  • Hebbes TR et al (1988) A direct link between core histone acetylation and transcriptionally active chromatin. Embo J 7:1395–1402

    CAS  PubMed  Google Scholar 

  • Hegi ME et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  CAS  PubMed  Google Scholar 

  • Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18:6538–6547

    CAS  PubMed  Google Scholar 

  • Hong C et al (2005) Shared epigenetic mechanisms in human and mouse gliomas inactivate expression of the growth suppressor SLC5A8. Cancer Res 65:3617–3623

    Article  CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070

    Article  CAS  PubMed  Google Scholar 

  • Jones PL et al (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19:187–191

    Article  CAS  PubMed  Google Scholar 

  • Kaminskas E et al (2005) Approval summary: Azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 11:3604–3608

    Article  CAS  PubMed  Google Scholar 

  • Kanamori M et al (2000) Microsatellite instability and the PTEN1 gene mutation in a subset of early onset gliomas carrying germline mutation or promoter methylation of the hMLH1 gene. Oncogene 19:1564–1571

    Article  CAS  PubMed  Google Scholar 

  • Kawaji H, Hayashizaki Y (2008) Exploration of small RNAs. PLoS Genet 4:e22

    Article  PubMed  Google Scholar 

  • Knobbe CB et al (2004) Hypermethylation and transcriptional downregulation of the carboxyl-terminal modulator protein gene in glioblastomas. J Natl Cancer Inst 96:483–486

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana M et al (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  PubMed  Google Scholar 

  • Lee DY et al (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72:73–84

    Article  CAS  PubMed  Google Scholar 

  • Li E et al (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365

    Article  CAS  PubMed  Google Scholar 

  • Mann BS et al (2007) FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T cell lymphoma. Oncologist 12:1247–1252

    Article  CAS  PubMed  Google Scholar 

  • Marks PA et al (2004) Histone deacetylase inhibitors: Development as cancer therapy. Novartis Found Symp 259:269–281; discussion 281–268

    Google Scholar 

  • Martinez R et al (2007) Hypermethylation of the proapoptotic gene TMS1/ASC: Prognostic importance in glioblastoma multiforme. J Neurooncol 82:133–139

    Article  CAS  PubMed  Google Scholar 

  • Michalowski MB et al (2006) Methylation of RASSF1A and TRAIL pathway-related genes is frequent in childhood intracranial ependymomas and benign choroid plexus papilloma. Cancer Genet Cytogenet 166:74–81

    Article  CAS  PubMed  Google Scholar 

  • Nakajima H et al (1998) FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res 241:126–133

    Article  CAS  PubMed  Google Scholar 

  • Ng HH et al (1999) MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 23:58–61

    CAS  PubMed  Google Scholar 

  • Nguyen CT et al (2001) Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: Correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res 29:4598–4606

    Article  CAS  PubMed  Google Scholar 

  • Ohgaki H (2005) Genetic pathways to glioblastomas. Neuropathology 25:1–7

    Article  PubMed  Google Scholar 

  • Ostrowski LE et al (1991) Expression of O6-methylguanine-DNA methyltransferase in malignant human glioma cell lines. Carcinogenesis 12:1739–1744

    Article  CAS  PubMed  Google Scholar 

  • Park YS et al (2008) The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol 15:1968–1976

    Article  PubMed  Google Scholar 

  • Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    Article  CAS  PubMed  Google Scholar 

  • Pieper RO et al (1990) Comparison of O-6-methylguanine DNA methyltransferase (MGMT) mRNA levels in Mer+ and Mer– human tumor cell lines containing the MGMT gene by the polymerase chain reaction technique. Cancer Commun 2:13–20

    CAS  PubMed  Google Scholar 

  • Pieper RO et al (1991) Direct correlation between methylation status and expression of the human O-6-methylguanine DNA methyltransferase gene. Cancer Commun 3:241–253

    CAS  PubMed  Google Scholar 

  • Qian X et al (1995) Localization of methylation sites in the human O6-methylguanine-DNA methyltransferase promoter: Correlation with gene suppression. Carcinogenesis 16:1385–1390

    Article  CAS  PubMed  Google Scholar 

  • Richon VM et al (2001) Histone deacetylase inhibitors: Development of suberoylanilide hydroxamic acid (SAHA) for the treatment of cancers. Blood Cells Mol Dis 27:260–264

    Article  CAS  PubMed  Google Scholar 

  • Rousseau E et al (2003) CDKN2A, CDKN2B and p14ARF are frequently and differentially methylated in ependymal tumours. Neuropathol Appl Neurobiol 29:574–583

    Article  CAS  PubMed  Google Scholar 

  • Rydberg B et al (1990) cDNA cloning and chromosomal assignment of the human O6-methylguanine-DNA methyltransferase. cDNA expression in Escherichia coli and gene expression in human cells. J Biol Chem 265:9563–9569

    CAS  PubMed  Google Scholar 

  • Schneider-Stock R, Ocker M (2007) Epigenetic therapy in cancer: Molecular background and clinical development of histone deacetylase and DNA methyltransferase inhibitors. IDrugs 10:557–561

    CAS  PubMed  Google Scholar 

  • Seligson DB et al (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:1262–1266

    Article  CAS  PubMed  Google Scholar 

  • Shah MH et al (2006) Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin Cancer Res 12:3997–4003

    Article  CAS  PubMed  Google Scholar 

  • Sigalotti L et al (2007) Epigenetic drugs as pleiotropic agents in cancer treatment: Biomolecular aspects and clinical applications. J Cell Physiol 212:330–344

    Article  CAS  PubMed  Google Scholar 

  • Stone AR et al (2004) Aberrant methylation and down-regulation of TMS1/ASC in human glioblastoma. Am J Pathol 165:1151–1161

    CAS  PubMed  Google Scholar 

  • Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  • Tano K et al (1990) Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for O6-alkylguanine. Proc Natl Acad Sci USA 87:686–690

    Article  CAS  PubMed  Google Scholar 

  • Ting AH et al (2006) The cancer epigenome – components and functional correlates. Genes Dev 20:3215–3231

    Article  CAS  PubMed  Google Scholar 

  • von Wronski MA, Brent TP (1994) Effect of 5-azacytidine on expression of the human DNA repair enzyme O6-methylguanine-DNA methyltransferase. Carcinogenesis 15:577–582

    Article  Google Scholar 

  • Waha A et al (2004) Analysis of HIC-1 methylation and transcription in human ependymomas. Int J Cancer 110:542–549

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T et al (2001) Promoter hypermethylation and homozygous deletion of the p14ARF and p16INK4a genes in oligodendrogliomas. Acta Neuropathol 101:185–189

    CAS  PubMed  Google Scholar 

  • Watanabe T et al (2002) Methylation of the p73 gene in gliomas. Acta Neuropathol 104:357–362

    CAS  PubMed  Google Scholar 

  • Weinhold B (2006) Epigenetics: The science of change. Environ Health Perspect 114:A160–A167

    Article  PubMed  Google Scholar 

  • Wiencke JK et al (2007) Methylation of the PTEN promoter defines low-grade gliomas and secondary glioblastoma. Neuro Oncol 9:271–279

    Article  CAS  PubMed  Google Scholar 

  • Wolfgang WW, Weller M, Neurooncology Working Group of the German Cancer Societ (2008). Randomized phase III study of sequential radiochemotherapy of oligoastrocytic tumors of WHO-grade III with PCV or temozolomide: NOA-04. J Clin Oncol 26: May 20 suppl; abstr LBA2007

    Google Scholar 

  • Wolter M et al (2001) Oligodendroglial tumors frequently demonstrate hypermethylation of the CDKN2A (MTS1, p16INK4a), p14ARF, and CDKN2B (MTS2, p15INK4b) tumor suppressor genes. J Neuropathol Exp Neurol 60:1170–1180

    CAS  PubMed  Google Scholar 

  • Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360

    Article  CAS  PubMed  Google Scholar 

  • Zysman MA et al (2002) Considerations when analyzing the methylation status of PTEN tumor suppressor gene. Am J Pathol 160:795–800

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay K. Puduvalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag New York

About this chapter

Cite this chapter

Puduvalli, V.K. (2010). Aberrations of the Epigenome in Gliomas: Novel Targets for Therapy. In: Ray, S. (eds) Glioblastoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0410-2_9

Download citation

Publish with us

Policies and ethics