Glioblastoma pp 399-419 | Cite as

Potential of Nanobiotechnology in the Management of Glioblastoma Multiforme

Chapter

Abstract

Glioblastoma multiforme (GBM) is a challenge in management as no cure has been found for this brain cancer. Among new technologies that are being applied to improve management of GBM, nanobiotechnology plays an important role. This chapter reviews the role of new approaches based on nanobiotechnology for improving diagnosis as well as for developing new drugs. The most important challenge is targeted delivery of therapeutics across the blood–brain barrier to the tumor without damaging the normal brain. Integration of diagnosis with therapeutics will facilitate personalized management of GBM.

Keywords

Blood brain barrier Brain cancer Brain tumors Cancer chemotherapy Gene therapy Glioblastoma multiforme Nanobiotechnology Nanooncology Nanoparticles Neurooncology 

References

  1. Abraham SA, Waterhouse DN, Mayer LD et al (2005) The liposomal formulation of doxorubicin. Methods Enzymol 391:71–97CrossRefPubMedGoogle Scholar
  2. Ambruosi A, Gelperina S, Khalansky A et al (2006) Influence of surfactants, polymer and doxorubicin loading on the anti-tumour effect of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model. J Microencapsul 23:582–592CrossRefPubMedGoogle Scholar
  3. Anderson EA, Isaacman S, Peabody DS et al (2006) Viral nanoparticles donning a paramagnetic coat: conjugation of MRI contrast agents to the MS2 capsid. Nano Lett 6:1160–1164CrossRefPubMedGoogle Scholar
  4. Anderson SA, Glod J, Arbab AS et al (2005) Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 105:420–425CrossRefPubMedGoogle Scholar
  5. Béduneau A, Saulnier P, Benoit JP (2007) Active targeting of brain tumors using nanocarriers. Biomaterials. 28:4947–4967CrossRefPubMedGoogle Scholar
  6. Bernardi RJ, Lowery AR, Thompson PA et al (2008) Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: an in vitro evaluation using human cell lines. J Neurooncol 86:165–172CrossRefPubMedGoogle Scholar
  7. Cai W, Chen K, Li ZB et al (2007) Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 48:1862–1870CrossRefPubMedGoogle Scholar
  8. Jain KK (2005) The role of nanobiotechnology in drug discovery. Drug Discov Today 10:1435–1442CrossRefPubMedGoogle Scholar
  9. Jain KK (2006) Future prospects for the cure of brain cancer. Technol Cancer Res Treat 5:183–184PubMedGoogle Scholar
  10. Jain KK (2007a) Role of nanobiotechnology in drug discovery. In: Guzman CA, Feuerstein G (eds) Pharmaceutical biotechnology. Landes Press, Austin, TX. http://eurekah.com/chapter/3570
  11. Jain KK (2007b) Use of nanoparticles for drug delivery in glioblastoma multiforme. Expert Rev Neurother 7:363–372CrossRefPubMedGoogle Scholar
  12. Jain KK (2008a) Recent advances in nanooncology. Technol Cancer Res Treat 7:1–14PubMedGoogle Scholar
  13. Jain KK (2008b) A handbook of nanomedicine. Humana/Springer, Totowa, NJGoogle Scholar
  14. Jain KK (2009) Nanobiotechnology: applications, markets and companies. Jain PharmaBiotech Publications, Basel, SwitzerlandGoogle Scholar
  15. Jeong YI, Kim SH, Jung TY et al (2006) Polyion complex micelles composed of all-trans retinoic acid and poly (ethylene glycol)-grafted-chitosan. J Pharm Sci 95:2348–2360CrossRefPubMedGoogle Scholar
  16. Jeuken JWM, van der Maazen RWM, Wesseling P (2006) Molecular diagnostics as a tool to personalize treatment in adult glioma patients. Technol Cancer Res Treat 5:215–229PubMedGoogle Scholar
  17. Jordan A, Scholz R, Maier-Hauff K et al (2006) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 78:7–14CrossRefPubMedGoogle Scholar
  18. Kircher MF, Mahmood U, King RS et al (2003) A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 63:8122–8125PubMedGoogle Scholar
  19. Kopelman R, Philbert M, Koo YEL et al (2005) Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer. J Magn Magn Mater 293:404–410CrossRefGoogle Scholar
  20. Krauze MT, Forsayeth J, Park JW, Bankiewicz KS (2006) Real-time imaging and quantification of brain delivery of liposomes. Pharm Res 23:2493–2504CrossRefPubMedGoogle Scholar
  21. Lopez KA, Waziri AE, Canoll PD, Bruce JN (2006) Convection-enhanced delivery in the treatment of malignant glioma. Neurol Res 28:542–548CrossRefPubMedGoogle Scholar
  22. Lu W, Sun Q, Wan J, She Z, Jiang XG (2006) Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res 66:11878–11887CrossRefPubMedGoogle Scholar
  23. Madhankumar AB, Slagle-Webb B, Mintz A et al (2006) Interleukin-13 receptor-targeted nanovesicles are a potential therapy for glioblastoma multiforme. Mol Cancer Ther 5:3162–3169CrossRefPubMedGoogle Scholar
  24. Mamot C, Drummond DC, Noble CO et al (2005) Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 65:11631–11638CrossRefPubMedGoogle Scholar
  25. Maier-Hauff K, Rothe R, Scholz R et al (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 81:53–60CrossRefPubMedGoogle Scholar
  26. Morgan MT, Nakanishi Y, Kroll DJ, Griset AP et al (2006) Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res 66:11913–11921CrossRefPubMedGoogle Scholar
  27. Muldoon LL, Sandor M, Pinkston KE, Neuwelt EA (2005) Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurgery 57:785–796CrossRefPubMedGoogle Scholar
  28. Na HB, Lee JH, An K et al (2007) Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed Engl 46:5397–5401CrossRefPubMedGoogle Scholar
  29. Neuwelt EA, Varallyay P, Bago AG et al (2004) Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours. Neuropathol Appl Neurobiol 30:456–471CrossRefPubMedGoogle Scholar
  30. Nikanjam M, Gibbs AR, Hunt CA et al (2007) Synthetic nano-LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme. J Control Release 124:163–171CrossRefPubMedGoogle Scholar
  31. Noble CO, Krauze MT, Drummond DC et al (2006) Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors: pharmacology and efficacy. Cancer Res 66:2801–2806CrossRefPubMedGoogle Scholar
  32. Peters A, Veronesi B, Calderon-Garciduenas L et al (2006) Translocation and potential neurological effects of fine and ultrafine particles: a critical update. Part Fibre Toxicol 3:13CrossRefPubMedGoogle Scholar
  33. Petri B, Bootz A, Khalansky A et al (2007) Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J Control Release 117:51–58CrossRefPubMedGoogle Scholar
  34. Plotkin M, Gneveckow U, Meier-Hauff K et al (2006) 18F-FET PET for planning of thermotherapy using magnetic nanoparticles in recurrent glioblastoma. Int J Hyperthermia 22:319–325CrossRefPubMedGoogle Scholar
  35. Reddy GR, Bhojani MS, McConville P et al (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 12:6677–6686CrossRefPubMedGoogle Scholar
  36. Reszka RC, Jacobs A, Voges J (2005) Liposome-mediated suicide gene therapy in humans. Methods Enzymol 391:200–208CrossRefPubMedGoogle Scholar
  37. Saito R, Bringas JR, McKnight TR et al (2004) Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cancer Res 64:2572–2579CrossRefPubMedGoogle Scholar
  38. Sakamoto J, Annapragada A, Decuzzi P, Ferrari M (2007) Antibiological barrier nanovector technology for cancer applications. Expert Opin Drug Deliv 4:359–369CrossRefPubMedGoogle Scholar
  39. Schneider T, Becker A, Ringe K et al (2008) Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol 195:21–27CrossRefPubMedGoogle Scholar
  40. Serpe L, Guido M, Canaparo R et al (2006) Intracellular accumulation and cytotoxicity of doxorubicin with different pharmaceutical formulations in human cancer cell lines. J Nanosci Nanotechnol 6:3062–3069CrossRefPubMedGoogle Scholar
  41. Simberg D, Duza T, Park JH et al (2007) Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci U S A 104:932–936CrossRefPubMedGoogle Scholar
  42. Steiniger SC, Kreuter J, Khalansky AS et al (2004) Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 109:759–767CrossRefPubMedGoogle Scholar
  43. Trehin R, Figueiredo JL, Pittet MJ et al (2006) Fluorescent nanoparticle uptake for brain tumor visualization. Neoplasia 8:302–311CrossRefPubMedGoogle Scholar
  44. Tsutsui Y, Tomizawa K, Nagita M et al (2007) Development of bionanocapsules targeting brain tumors. J Control Release 122:159–164CrossRefPubMedGoogle Scholar
  45. Wang J, Yong WH, Sun Y et al (2007) Receptor-targeted quantum dots: fluorescent probes for brain tumor diagnosis. J Biomed Opt 12:044021CrossRefPubMedGoogle Scholar
  46. Wu G, Barth RF, Yang W et al (2004) Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconjug Chem 15:185–194CrossRefPubMedGoogle Scholar
  47. Xie J, Wang CH (2006) Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. Pharm Res 23:1817–1826CrossRefPubMedGoogle Scholar
  48. Yang W, Barth RF, Wu G et al (2006) Molecular targeting and treatment of EGFRvIII-positive gliomas using boronated monoclonal antibody L8A4. Clin Cancer Res 12:3792–3802CrossRefPubMedGoogle Scholar
  49. Yu W, Pirollo KF, Rait A et al (2004) A sterically stabilized immunolipoplex for systemic administration of a therapeutic gene. Gene Ther 11:1434–1440CrossRefPubMedGoogle Scholar
  50. Zhang Y, Sun C, Kohler N et al (2004) Self-assembled coatings on individual monodisperse magnetite nanoparticles for efficient intracellular uptake. Biomed Microdevices 6:33–40CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.BaselSwitzerland

Personalised recommendations