Skip to main content

Organizing Observations: Data Models

  • Chapter
  • First Online:
Medical Imaging Informatics

Abstract

Thus far, discussion has focused on issues related to collecting and analyzing clinical data. Yet central to the challenge of informatics is the organization of all of this information to enable a continuum of healthcare and research applications: the type of attributes supported in characterizing an entity within a data model and the scope of relationships defined between these objects determine the ease with which we can retrieve information and ultimately drive how we come to perceive and work with the data. This chapter overviews several data models that have been proposed over the years to address representational issues inherent to medical information. Three categories of data models are covered: spatial models, which are concerned with representing physical and anatomical relations between objects; temporal models that embody a chronology and/or other time-based sequences/patterns; and clinically-oriented models, which systematically arrange information around a healthcare abstraction or process. Notably, these models no longer serve the sole purpose of being data structures, but are also foundations upon which rudimentary logical reasoning and inference can occur. Finally, as translational informatics begins to move toward the use of large clinical datasets, the context under which such data are captured is important to consider; this chapter thus concludes by introducing the idea of a the phenomenon-centric data model (PCDM) that explicitly embeds the principles of scientific investigation and hypotheses with clinical observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ultimately, one can argue that all computerized temporal models are discrete, even with hierarchical time models, as they reach a unit of time that can no longer be subdivided or interpolated given the limitations of precision and representation.

  2. 2.

    Many ontologies, such as based on OBO, instead use the singular concept of developsFrom to model entity changes/evolution.

  3. 3.

    Fusion should not be confused with the modeling concept of aggregation. This latter concept reflects a larger object composed of a group of smaller objects - however, each constituent element maintains its own identity. In fusion, the participant fused objects cease to exist once joined, with the entity taking their place.

  4. 4.

    Most of today's relational database management systems offer some support for temporal variables, having proprietary calendar and timestamp operators. However, the power of TSQL2 is arguably missing in the majority of these implementations.

  5. 5.

    The idea behind a phenomenon is not new to medicine, being found in several different medical ontologies. For instance, UMLS defines a phenomenon as a child of the event class; and its subclasses encompass biologic and pathologic functions. However, here we employ a broader, more classical sense of the term.

References

  1. Aberle DR, Dionisio JD, McNitt-Gray MF, Taira RK, Cardenas AF, Goldin JG, Brown K, Figlin RA, Chu WW (1996) Integrated multimedia timeline of medical images and data for thoracic oncology patients. RadioGraphics, 16(3):669-681.

    Google Scholar 

  2. Adlassnig KP, Combi C, Das AK, Keravnou ET, Pozzi G (2006) Temporal representation and reasoning in medicine: Research directions and challenges. Artif Intell Med, 38(2):101-113.

    Article  Google Scholar 

  3. Allen JF (1983) Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):832-843.

    Article  MATH  Google Scholar 

  4. Anselma L, Terenziani P, Montani S, Bottrighi A (2006) Towards a comprehensive treat-ment of repetitions, periodicity and temporal constraints in clinical guidelines. Artif Intell Med, 38(2):171-195.

    Article  Google Scholar 

  5. Augusto JC (2005) Temporal reasoning for decision support in medicine. Artif Intell Med, 33(1):1-24.

    Article  MathSciNet  Google Scholar 

  6. Baldock RA, Burger A (2008) Anatomical ontologies: Linking names to places in biology. Anatomy Ontologies for Bioinformatics. Springer, pp 197-211.

    Google Scholar 

  7. Bean CA (1997) Formative evaluation of a frame-based model of locative relationships in human anatomy. Proc AMIA Annu Fall Symp, pp 625-629.

    Google Scholar 

  8. Berg M (1998) Medical work and the computer-based patient record: A sociological per-spective. Methods Inf Med, 37(3):294-301.

    Google Scholar 

  9. Berndt D, Clifford J (1994) Using dynamic time warping to find patterns in time series. AAAI-94 Workshop on Knowledge Discovery in Databases, pp 229-248.

    Google Scholar 

  10. Bittner T, Donnelly M, Goldberg LJ, Neuhaus F (2008) Modeling principles and method-ologies - Spatial representation and reasoning. Anatomy Ontologies for Bioinformatics, pp 307-326.

    Google Scholar 

  11. Bober M (2001) MPEG-7 visual shape descriptors. IEEE Trans Circuits Systems Video Technology, 11(6):716-719.

    Article  Google Scholar 

  12. Boxwala AA, Peleg M, Tu S, Ogunyemi O, Zeng QT, Wang D, Patel VL, Greenes RA, Shortliffe EH (2004) GLIF3: A representation format for sharable computer-interpretable clinical practice guidelines. J Biomed Inform, 37(3):147-161.

    Article  Google Scholar 

  13. Brandt S (1999) Use of shape features in content-based image retrieval. Department of Engineering Physics and Mathematics, MS Thesis. Helsinki University of Technology.

    Google Scholar 

  14. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, et al. (2001) Minimum information about a microarray experiment (MIAME) - Toward standards for microarray data. Nat Genet, 29(4):365-371.

    Article  Google Scholar 

  15. Bui AA (2000) A multimedia data model with generalized stream constructs. Computer Science Department, PhD Dissertation. University of California, Los Angeles.

    Google Scholar 

  16. Bui AA, Aberle DR, Kangarloo H (2007) TimeLine: Visualizing integrated patient records. IEEE Trans Inf Technol Biomed, 11(4):462-473.

    Article  Google Scholar 

  17. Campos J, Hornsby K (2004) Temporal constraints between cyclic geographic events. Proc GeoInfo 2004, Campos do Jordao, Brazil, pp 109-125.

    Google Scholar 

  18. Cardenas AF, Ieong IT, Barker R, Taira RK, Breant CM (1993) The knowledge-based object-oriented PICQUERY+ language. IEEE Trans Knowledge and Data Engineering, 5(4):644-657.

    Article  Google Scholar 

  19. Chakravarty S, Shahar Y (2000) CAPSUL: A constraint-based specification of repeating patterns in time-oriented data. Annals of Mathematics and Artificial Intelligence, 30(1):3-22.

    Article  MATH  Google Scholar 

  20. Chan EPF, R. Z (1996) QL/G - A query language for geometric data bases. Proc 1st Intl Conf GIS in Urban Regional and Environment Planning, Samos, Greece, pp 271-286.

    Google Scholar 

  21. Chang NS, Fu KS (1979) Query-by-pictorial-example. Proc IEEE 3rd Intl Computer Soft-ware and Applications Conference (COMPSAC 79), pp 325-330.

    Google Scholar 

  22. Chang SK, Jungert E (eds) (1996) Symbolic Projection for Image Information Retrieval and Spatial Reasoning. Academic Press.

    Google Scholar 

  23. Chang SK, Shi QY, Yan CW (1987) Iconic indexing by 2-D strings. IEEE Trans Pattern Analysis and Machine Intelligence, 9(3):413-428.

    Article  Google Scholar 

  24. Chen P (1976) The entity-relationship model - Toward a unified view of data. ACM Trans Database Syst, 1(1):9-36.

    Article  Google Scholar 

  25. Chu WW, Hsu C-C, Cardenas AF, Taira RK (1998) Knowledge-based image retrieval with spatial and temporal constructs. IEEE Trans Knowledge and Data Engineering, 10:872-888.

    Article  Google Scholar 

  26. Chu WW, Ieong IT, Taira RK, Breant CM (1992) A temporal evolutionary object-oriented data model and its query language for medical image management. Proc 18th Intl Conf Very Large Data Bases. Morgan Kauffman, pp 53-64.

    Google Scholar 

  27. Clementini E, Di Felice P (2000) Spatial operators. ACM SIGMOD Record, 29(3):31-38.

    Article  Google Scholar 

  28. Clinical Data Interchange Standards Consortium (2008) CDISC home page. http://www.cdisc.org . Accessed January 3, 2009.

  29. Coburn JC, Upal MA, Crisco JJ (2007) Coordinate systems for the carpal bones of the wrist. J Biomechanics, 40(1):203-209.

    Article  Google Scholar 

  30. Cohn A (1996) Calculi for qualitative spatial reasoning. Artificial Intelligence and Sym-bolic Mathematical Computation, pp 124-143.

    Google Scholar 

  31. Combi C, Gozzi M, Oliboni B, Juarez JM, Marin R (2009) Temporal similarity measures for querying clinical workflows. Artif Intell Med, In Press, Corrected Proof.

    Google Scholar 

  32. Combi C, Montanari A, Pozzi G (2007) The T4SQL temporal query language. Proc 16th ACM Conf Information and Knowledge Management. ACM, Lisbon, Portugal, pp 193-202.

    Google Scholar 

  33. Combi C, Oliboni B, Rossato R (2005) Merging multimedia presentations and semistruc-tured temporal data: A graph-based model and its application to clinical information. Artif Intell Med, 34(2):89-112.

    Article  Google Scholar 

  34. Combi C, Pozzi G (2001) HMAP - A temporal data model managing intervals with differ-ent granularities and indeterminacy from natural language sentences. The VLDB Journal, 9(4):294-311.

    MATH  Google Scholar 

  35. Combi C, Shahar Y (1997) Temporal reasoning and temporal data maintenance in medi-cine: Issues and challenges. Computers in Biology and Medicine, 27(5):353-368.

    Article  Google Scholar 

  36. Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Analysis and Machine Intelligence, 23(6):681-685.

    Article  Google Scholar 

  37. Cousins SB, Kahn MG (1991) The visual display of temporal information. Artif Intell Med, 3:341-357.

    Article  Google Scholar 

  38. Das AK, Musen MA (1994) A temporal query system for protocol-directed decision support. Methods Inf Med, 33(4):358-370.

    Google Scholar 

  39. Das AK, Musen MA (2001) A formal method to resolve temporal mismatches in clinical databases. Proc AMIA Symp:130-134.

    Google Scholar 

  40. Davidson D (2007) Time in anatomy. Anatomy Ontologies for Bioinformatics: Principles and Practice. Springer, pp 213-247.

    Google Scholar 

  41. De Clercq E, Van Casteren V, Jonckheer P, Burggraeve P, Lafontaine MF, Degroote K, France FR (2007) Are problem-oriented medical records (POMR) suitable for use in GPs' daily practice? Stud Health Technol Inform, 129(1):68-72.

    Google Scholar 

  42. Del Bimbo A, Rella L, Vicario E (1995) Visual specification of branching time temporal logic. Proc 11th Intl IEEE Symp on Visual Languages. IEEE Computer Society, pp 61-68.

    Google Scholar 

  43. Della Croce U, Cappozzo A, Kerrigan D (1999) Pelvis and lower limb anatomical land-mark calibration precision and its propagation to bone geometry and joint angles. Medical and Biological Engineering and Computing, 37(1):155-161.

    Article  Google Scholar 

  44. Deshpande AM, Brandt C, Nadkarni PM (2003) Temporal query of attribute-value patient data: Utilizing the constraints of clinical studies. International Journal of Medical Informat-ics, 70(1):59-77.

    Article  Google Scholar 

  45. Dionisio JD, Cardenas AF (1998) A unified data model for representing multimedia, time-line, and simulation data. IEEE Trans Knowledge and Data Engineering, 10(5):746-767.

    Article  Google Scholar 

  46. Dionisio JD, Cardenas AF, Lufkin RF, DeSalles A, Black KL, Taira RK, Chu WW (1997) A multimedia database system for thermal ablation therapy of brain tumors. J Digital Imaging, 10:21-26.

    Article  Google Scholar 

  47. Dionisio JDN, Cardenas AF (1996) MQuery: A visual query language for multimedia, timeline and simulation data. J Visual Languages and Computing, 7(4):377-401.

    Article  Google Scholar 

  48. Donnelly WJMD (2005) Viewpoint: Patient-centered medical care requires a patient-centered medical record. Academic Medicine, 80(1):33-38.

    Article  Google Scholar 

  49. Dorda W, Gall W, Duftschmid G (2002) Clinical data retrieval: 25 years of temporal query management at the University of Vienna Medical School. Methods Inf Med, 41(2):89-97.

    Google Scholar 

  50. Dutta S (1988) Temporal reasoning in medical expert systems. Proc Symp Engineering of Computer-Based Medical Systems, pp 118-122.

    Google Scholar 

  51. Egenhofer MJ (1994) On the equivalence of topological relations. Intl J Geographical Information Systems, 8(6):133-152.

    Google Scholar 

  52. Egenhofer MJ (1994) Spatial SQL: A query and presentation language. IEEE Trans Knowledge and Data Engineering, 6(1):86-95.

    Article  Google Scholar 

  53. Egenhofer MJ (1997) Query processing in spatial-query-by-sketch. J Visual Languages and Computing, 8(4):403-424.

    Article  Google Scholar 

  54. Feinstein AR (1973) The problems of the “problem-oriented medical record”. Ann Intern Med, 78(5):751-762.

    Google Scholar 

  55. Fletcher RH (1974) Auditing problem-oriented records and traditional records: A controlled comparison of speed, accuracy and identification of errors in medical care. N Engl J Med, 290(15):829-833.

    Article  Google Scholar 

  56. Flickner M, Sawhney H, Niblack W, Ashley J, Huang Q, Dom B, Gorkani M, Hafner J, Lee D, Petkovic D (1995) Query by image and video content: The QBIC system. Com-puter, 28(9):23-32.

    Google Scholar 

  57. Freeman J (1975) The modelling of spatial relations. Computer Graphics and Image Proc-essing, 4(2):156-171.

    Article  Google Scholar 

  58. Georgsson F (2003) Anatomical coordinate system for bilateral registration of mammo-grams. Image Analysis, pp 83-90.

    Google Scholar 

  59. Gibbs S, Breiteneder C, Tsichritzis D (1994) Data modeling of time-based media. Proc 1994 ACM SIGMOD Intl Conf Management of Data. ACM, Minneapolis, Minnesota, United States.

    Google Scholar 

  60. Guting RH (1994) An introduction to spatial database systems. The VLDB Journal, 3(4):357-399.

    Article  Google Scholar 

  61. Haendel MA, Neuhaus F, Osumi-Sutherland D, Mabee PM, Mejino JL, Mungall CJ, Smith B (2008) CARO - The Common Anatomy Reference Ontology. Anatomy Ontologies for Bioinformatics. Springer, pp 327-349.

    Google Scholar 

  62. Herring JR (2006) OpenGIS implementation specification for geographic information - Simple feature access, Part 2: SQL option. Open Geospatial Consortium Inc. http://www.opengeospatial.org/standards/sfs . Accessed December 15, 2008.

  63. Hornbrook MC, Hurtado AV, Johnson RE (1985) Health care episodes: Definition, meas-urement and use. Med Care Rev, 42(2):163-218.

    Article  Google Scholar 

  64. Hripcsak G (1994) Writing Arden syntax medical logic modules. Comput Biol Med, 24(5):331-363.

    Article  Google Scholar 

  65. Hripcsak G, Zhou L, Parsons S, Das AK, Johnson SB (2005) Modeling electronic dis-charge summaries as a simple temporal constraint satisfaction problem. J Am Med Inform Assoc, 12(1):55-63.

    Article  Google Scholar 

  66. Juarez JM, Guil F, Palma J, Marin R (2009) Temporal similarity by measuring possibilistic uncertainty in CBR. Fuzzy Sets Syst, 160(2):214-230.

    Article  MATH  MathSciNet  Google Scholar 

  67. Kass M, Witkin A, erzopoulos D (1988) Snakes: Active contour models. Intl J Comp Vision, 1(4):321–331.

    Article  Google Scholar 

  68. Kay S, Purves IN (1996) Medical records and other stories: A narratological framework. Methods Inf Med, 35(2):72-87.

    Google Scholar 

  69. Loncaric S (1998) A survey of shape analysis techniques. Pattern Recognition, 31(8):983-1001.

    Article  Google Scholar 

  70. Long W (1996) Temporal reasoning for diagnosis in a causal probabilistic knowledge base. Artif Intell Med, 8(3):193-215.

    Article  Google Scholar 

  71. Marshall S (1989) Review of shape coding techniques. Image and Vision Computing, 7(4):281-294.

    Article  Google Scholar 

  72. Martins SB, Shahar Y, Goren-Bar D, Galperin M, Kaizer H, Basso LV, McNaughton D, Goldstein MK (2008) Evaluation of an architecture for intelligent query and exploration of time-oriented clinical data. Artif Intell Med, 43(1):17-34.

    Article  Google Scholar 

  73. McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis: A survey. Medical Image Analysis, 1(2):91-108.

    Article  Google Scholar 

  74. Mejino JL, Jr., Rosse C (1999) Conceptualization of anatomical spatial entities in the Digi-tal Anatomist Foundational Model. Proc AMIA Symp, pp 112-116.

    Google Scholar 

  75. Motakis I, Zaniolo C (1997) Formal semantics for composite temporal events in active database rules. Journal of Systems Integration, 7(3):291-325.

    Article  Google Scholar 

  76. Nadkarni PM (1998) CHRONOMERGE: An application for the merging and display of multiple time-stamped data streams. Comput Biomed Res, 31(6):451-464.

    Article  Google Scholar 

  77. Neuhaus F, Smith B (2008) Modeling principles and methodologies - Relations in ana-tomical ontologies. Anatomy Ontologies for Bioinformatics, pp 289-305.

    Google Scholar 

  78. Nigrin DJ, Kohane IS (2000) Temporal expressiveness in querying a timestamp-based clinical database. J Am Med Inform Assoc, 7(2):152-163.

    Google Scholar 

  79. Nygren E, Henriksson P (1992) Reading the medical record. Part I: Analysis of physicians' ways of reading the medical record. Comput Methods Programs Biomed, vol 39, pp 1-12.

    Article  Google Scholar 

  80. O'Connor MJ, Shankar RD, Parrish DB, Das AK (2008) Knowledge-data integration for temporal reasoning in a clinical trial system. International Journal of Medical Informatics, In Press, Corrected Proof.

    Google Scholar 

  81. O'Connor MJ, Tu SW, Musen MA (2002) The Chronus II temporal database mediator. Proc AMIA Symp, pp 567-571.

    Google Scholar 

  82. Palma J, Juarez JM, Campos M, Marin R (2006) Fuzzy theory approach for temporal model-based diagnosis: An application to medical domains. Artif Intell Med, 38(2):197-218.

    Article  Google Scholar 

  83. Pani AK, Bhattacharjee GP (2001) Temporal representation and reasoning in artificial intelligence: A review. Mathematical and Computer Modelling, 34(1-2):55-80.

    Article  MATH  Google Scholar 

  84. Pizer SM, Fletcher PT, Joshi S, Thall A, Chen JZ, Fridman Y, Fritsch DS, Gash AG, Glotzer JM, Jiroutek MR (2003) Deformable m-reps for 3D medical image segmentation. Intl J Comp Vision, 55(2):85-106.

    Article  Google Scholar 

  85. Post A, Harrison J, Jr. (2006) Data acquisition behaviors during inpatient results review: Implications for problem-oriented data displays. Proc AMIA Annu Fall Symp:644-648.

    Google Scholar 

  86. Post AR, Harrison JH, Jr. (2007) PROTEMPA: A method for specifying and identifying temporal sequences in retrospective data for patient selection. J Am Med Inform Assoc, 14(5):674-683.

    Article  Google Scholar 

  87. Post AR, Harrison Jr JH (2008) Temporal data mining. Clinics in Laboratory Medicine, 28(1):83-100.

    Article  Google Scholar 

  88. Post AR, Sovarel AN, Harrison JH, Jr. (2007) Abstraction-based temporal data retrieval for a Clinical Data Repository. Proc AMIA Symp, pp 603-607.

    Google Scholar 

  89. Randell DA, Cui Z, Cohn A (1992) A spatial logic based on regions and connection. In: Nebel B, Rich C, Swartout W (eds) Principles of Knowledge Representation and Reason-ing: Proc 3rd Intl Conf. Morgan Kaufmann, pp 165-176.

    Google Scholar 

  90. Rector AL, Nowlan WA, Kay S, Goble CA, Howkins TJ (1993) A framework for model-ling the electronic medical record. Methods Inf Med, 32(2):109-119.

    Google Scholar 

  91. Renz J (2002) Introduction. Qualitative Spatial Reasoning with Topological Information. Springer-Verlag, pp 1-11.

    Google Scholar 

  92. Rosse C, Mejino JL, Jr. (2003) A reference ontology for biomedical informatics: The Foundational Model of Anatomy. J Biomed Inform, 36(6):478-500.

    Article  Google Scholar 

  93. Rosse C, Mejino JL, Modayur BR, Jakobovits R, Hinshaw KP, Brinkley JF (1998) Motiva-tion and organizational principles for anatomical knowledge representation: the digital anatomist symbolic knowledge base. J Am Med Inform Assoc, 5(1):17-40.

    Google Scholar 

  94. Roussopoulos N, Faloutsos C, Sellis T (1988) An efficient pictorial database system for PSQL. Software Engineering, IEEE Transactions on, 14(5):639-650.

    Article  Google Scholar 

  95. Salmon P, Rappaport A, Bainbridge M, Hayes G, Williams J (1996) Taking the problem oriented medical record forward. Proc AMIA Annu Fall Symp, pp 463-467.

    Google Scholar 

  96. Schneider M (1997) Spatial data types - A survey. In: Schneider M (ed) Spatial Data Types for Database Systems. Springer-Verlag, pp 11-83.

    Chapter  Google Scholar 

  97. Schneider M (1999) Uncertainty management for spatial data in databases: Fuzzy spatial data types. Advances in Spatial Databases, pp 330-351.

    Google Scholar 

  98. Shahar Y (1999) Timing is everything: Temporal reasoning and temporal data maintenance in medicine. Artificial Intelligence in Medicine, pp 30-46.

    Google Scholar 

  99. Shahar Y, Combi C (1998) Timing is everything. Time-oriented clinical information sys-tems. West J Med, 168(2):105-113.

    Google Scholar 

  100. Shahar Y, Goren-Bar D, Boaz D, Tahan G (2006) Distributed, intelligent, interactive visu-alization and exploration of time-oriented clinical data and their abstractions. Artif Intell Med, 38(2):115-135.

    Article  Google Scholar 

  101. Shahar Y, Musen MA (1996) Knowledge-based temporal abstraction in clinical domains. Artif Intell Med, 8(3):267-298.

    Article  Google Scholar 

  102. Signes J, Fisher Y, Eleftheriadis A (2000) MPEG-4's binary format for scene description. Signal Processing: Image Communication, 15:321-345.

    Article  Google Scholar 

  103. Sistla AP, Yu C, Haddad R (1994) Reasoning about spatial relationships in picture retrieval systems. Proc 20th Very Large Data Base (VLDB) Conf, Santiago, Chile, pp 570-581.

    Google Scholar 

  104. Smith B, Ceusters W, Klagges B, Kohler J, Kumar A, Lomax J, Mungall C, Neuhaus F, Rector AL, Rosse C (2005) Relations in biomedical ontologies. Genome Biol, 6(5):R46.

    Article  Google Scholar 

  105. Snodgrass RT (ed) (1995) The TSQL2 Temporal Query Language. Kluwer Academic Publishers.

    MATH  Google Scholar 

  106. Sowa JF (2000) Processes. Knowledge Representation: Logical, Philosophical, and Computational Foundations. MIT Press, pp 206-264.

    Google Scholar 

  107. Spackman K. (2008) SNOMED CT Style Guide: Body Structures - Anatomy. International Health Terminology Standards Development Organization.

    Google Scholar 

  108. Tiffe S (2002) Defining medical concepts by linguistic variables with fuzzy Arden Syntax. Proc AMIA Symp:796-800.

    Google Scholar 

  109. Vila L (2005) Formal theories of time and temporal incidence. In: Fisher M, Gabbay D, Vila L (eds) Handbook of Temporal Reasoning in Artificial Intelligence. Elsevier.

    Google Scholar 

  110. Viqueira JRR, Lorentzos NA (2007) SQL extension for spatio-temporal data. The VLDB Journal, 16(2):179-200.

    Article  Google Scholar 

  111. Weed LL (1968) Medical records that guide and teach. N Engl J Med, 278(11):593-600.

    Article  Google Scholar 

  112. Weng C, Kahn M, Gennari J (2002) Temporal knowledge representation for scheduling tasks in clinical trial protocols. Proc AMIA Symp, pp 879-883.

    Google Scholar 

  113. Wiederhold G (1981) Databases for Health Care. Springer-Verlag New York, Inc..

    Google Scholar 

  114. Wingert TD, Kralewski JE, Lindquist TJ, Knutson DJ (1995) Constructing episodes of care from encounter and claims data: Some methodological issues. Inquiry, 32(4):430-443.

    Google Scholar 

  115. Winkelman WJ, Leonard KJ (2004) Overcoming structural constraints to patient utilization of electronic medical records: A critical review and proposal for an evaluation framework. J Am Med Inform Assoc, 11(2):151-161.

    Article  Google Scholar 

  116. World Wide Web Consortium (W3C) (2008) Synchronized Multimedia Integration Language (SMIL 3.0). http://www.w3.org/TR/SMIL3/smil30.html#smil-introduction . Accessed December 5, 2008.

  117. Zhou L, Hripcsak G (2007) Temporal reasoning with medical data - A review with emphasis on medical natural language processing. J Biomedical Informatics, 40(2):183-202.

    Article  Google Scholar 

  118. Zhou L, Melton GB, Parsons S, Hripcsak G (2006) A temporal constraint structure for extracting temporal information from clinical narrative. J Biomed Inform, 39(4):424-439.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex A. T. Bui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bui, A.A.T., Taira, R.K. (2010). Organizing Observations: Data Models. In: Bui, A., Taira, R. (eds) Medical Imaging Informatics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0385-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0385-3_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0384-6

  • Online ISBN: 978-1-4419-0385-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics