Skip to main content

Seismic Imaging of the Mantle Discontinuities Beneath India: From Archean Cratons to Himalayan Subduction Zone

  • Chapter
Book cover Physics and Chemistry of the Earth’s Interior

Abstract

We image the mantle discontinuities in the depth from ∼200–800 km beneath India from its southernmost Archean and Proterozoic cratons, Proterozoic mobile belts to the Himalayan subduction zone using P to S converted phases in the 1957 teleseismic waveforms recorded over 54 broadband seismograph locations. These phases are generated from the velocity contrast at the layer boundary. Our results show presence of Lehmann discontinuity at a depth of 220–250 km beneath southern part of India. The 410 discontinuity is sharp and at its normal depth beneath Precambrian terrains and is elevated by ∼10–15 km in the Ganges basin and the Himalaya. This suggests progressive cooling or thickening of the Indian lithosphere towards its northern margin. We observe a complex 660 km discontinuity with a broad double peak beneath the Himalaya and southern India that may be due to presence of non-olivine component in the deep mantle. Apart from the above mentioned global discontinuities a velocity interface is mapped at 475 km depth beneath the Ladakh. The mantle transition zone show ∼10 km thickening beneath the Ganges basin, suggestive of the presence of cold material within. The elevated 410 discontinuity beneath the Ganges basin and the Himalaya is interpreted as the signature of north-east subducting Indian slab and perhaps part of the Tethyan oceanic lithosphere in front of it. The Tethyan subducted slab broke off from the overlying Indian slab and rolled back southward, crossed the mantle transition zone discontinuity and lies presently beneath the Ganges basin. This relict Tethyan slab is possibly responsible for the thickened transition zone beneath the Ganges basin and the complex 660 km discontinuity beneath the Himalaya.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agee C (1993) Petrology of the mantle transition zone. Ann Rev Earth Planet Sci 21: 19–41

    Article  Google Scholar 

  • Ai Y, Zheng T, Xu W, He Y, Dong D (2003) A complex 660 km discontinuity beneath northeast China. Earth Planet Sci Lett 212: 63–71

    Article  Google Scholar 

  • Argand E (1924) La Tectonique de l’ Asie Int Geol Cong Rep Sess 13: 170–372

    Google Scholar 

  • Barazangi M, Ni J (1982) Velocities and propagation characteristics of Pn and Sn beneath the Himalayan arc and Tibetan Plateau: possible evidence for underthrusting of Indian lithosphere beneath Tibet. Geology 10: 179–185

    Article  Google Scholar 

  • Bina C, Helffrich G (1994) Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. J Geophys Res 99: 15853–15860

    Article  Google Scholar 

  • Bird P (1978) Initiation of intracontinental subduction in the Himalaya. J Geophys Res 83: 4975–4987

    Article  Google Scholar 

  • Collier JD, Helffrich G (2001) The thermal influence of the subducting slab beneath South America from 410 and 660 km discontinuity observation. Geophys J Int 147: 319–329

    Article  Google Scholar 

  • Deuss A, Woodhouse JH (2002) A systematic search for mantle discontinuities using SS-precursors. Geophys Res Lett 29. doi: 10.1029/2002GL014768

    Google Scholar 

  • Dueker KG, Sheehan AF (1997) Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track. J Geophy Res 102: 8313–8327

    Article  Google Scholar 

  • Efron B, Tibshirani R (1991) Statistical data analysis in the computer age. Science 253: 390–395

    Article  Google Scholar 

  • Gilbert HJ, Sheehan AF, Dueker KG, Molnar P (2003) Receiver functions in western United States, with implications for upper mantle structure and dynamics. J Geophys Res 108. doi: 10.1029/2001JB001194

    Google Scholar 

  • Goodwin AM (1996) Principles of Precambrian geology, Academic Press

    Google Scholar 

  • Gu Y, Dziewonski AM, Agee CB (1998) Global de-correlation of the topography of the transition zone discontinuities. Earth Planet Sci Lett 157: 57–67

    Article  Google Scholar 

  • Gu Y, Dziewonski AM, Ekstrom G (2001) Preferential detection of the Lehmann discontinuity beneath continents. Geophys Res Lett 28: 4655–4658

    Article  Google Scholar 

  • Gaherty JB, Jordan TH (1995) Lehmann discontinuity as the base of an anisotropic layer beneath continents. Science 268: 1468–1471

    Article  Google Scholar 

  • Gupta S, Rai SS, Prakasam KS, Srinagesh D, Bansal BK, Priestley K, Chadha RK, Gaur VK (2003) Nature of the south Indian crust: implications for Precambrian crustal evolution. Geophys Res Lett 30: 1419. doi:101029/2002/GL 016770

    Article  Google Scholar 

  • Gurrola H, Minster JB, Owens TJ (1994) The use of velocity spectrum for stacking receiver functions and imaging upper mantle discontinuities. Geophys J Int 117: 427–440

    Article  Google Scholar 

  • Hales AL, Muirhead KJ, Rynn JMW (1991) A compressional wave velocity distribution for the upper mantle. Tectonophysics 63: 309–348

    Article  Google Scholar 

  • Houseman GA, McKenzie DP, Molnar P (1981) Convective instability of a thickened boundary layer and its relevance for the thermal evolution of the continental convergent belts. J Geophys Res 86: 6115–6132

    Article  Google Scholar 

  • Inoue T, Weidner DJ, Northrup PA, Parise JB (1998) Elastic properties of hydrous ringwoodite in Mg2SiO4. Earth Planet Sci Lett 160: 107–113

    Article  Google Scholar 

  • Jagadeesh S, Rai SS (2008) Thickness, composition and evolution of the Indian Precambrian crust. Precambrian Res 162: 4–15

    Article  Google Scholar 

  • Karato S (1992) On the Lehmann discontinuity. Geophys Res Lett 19: 2255–2258

    Article  Google Scholar 

  • Kennet B, Engdahl E (1991) Travel times for global earth location and phase identification. Geophys J Int 105: 429–465

    Article  Google Scholar 

  • Kind R, Yuan X, Saul J, Nelson D, Sobolev SV, Mechie J, Zhao W, Kosarev G, Ni J, Achauer U, Jiang M (2002) Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction. Science 298: 1219–1221

    Article  Google Scholar 

  • Kiselev S, Oresin S, Vinnik L, Gupta S, Rai SS, Singh A, Kumar RM (2008) Lithosphere of the Dharwar craton by joint inversion of P and S receiver functions. Geophys J Int 173: 1106–1118

    Article  Google Scholar 

  • Kumar MR, Mohan G (2005) Mantle discontinuities beneath the Deccan volcanic province. Earth Planet Sci Lett 237: 252–263

    Article  Google Scholar 

  • Koulakov I, Soboloev SV (2006) A tomographic image of Indian lithosphere break-off beneath the Pamir-Hindukush region. Geophys J Int 164: 425–440

    Article  Google Scholar 

  • Langston CA (1979) Structure under mount Rainier, Washington, inferred from teleseismic body waves. J Geophys Res 84: 4749–4762

    Article  Google Scholar 

  • Lawrence JF, Shearer PM (2006) A global study of transition zone thickness using receiver functions. J Geophys Res 111. doi: 10.1029/2005JB003973

    Google Scholar 

  • Lebedev S, Chevrot S, van der Hilst RD (2003) Correlation between the shear-speed structure and thickness of the mantle transition zone. Phys Earth Planet Int 136: 25–40

    Article  Google Scholar 

  • Lehmann I (1959) Velocity of longitudinal waves in the upper part of the earth’s mantle. Ann Geophys 15: 93–113

    Google Scholar 

  • Lehmann I (1961) S and the structure of the upper mantle. Geophys J R Ast Soc 4: 124–138

    Google Scholar 

  • Li A, Fisher KM, Wysession ME, Clarke TJ (1998) Mantle discontinuties and temperature under the North America. Nature 395: 160–163

    Article  Google Scholar 

  • Li C, van der Hilst RD, Toksoz MN (2006) Constraining P-wave velocity variations in the upper mantle beneath Southeast Asia. Phys Earth Planet Int 154: 180–195

    Article  Google Scholar 

  • Liggoria JP, Ammon CJ (1999) Iterative deconvolution and receiver-function estimation. Bull Seism Soc Am 89: 1395–1400

    Google Scholar 

  • Masse RP (1973) Compressional wave velocity distribution beneath central and eastern North America. Bull Seis Soc Am 63: 911–935

    Google Scholar 

  • Mitra S, Priestley K, Gaur VK, Rai SS (2006) Shear-Wave structure of the south Indian Lithosphere from Rayleigh wave phase velocity measurements. Bull Seism Soc Am 96: 1551–1559

    Article  Google Scholar 

  • Molnar P (1988) A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram and their tectonic implications. Phil Trans R Soc Lond Ser A 326: 33–88

    Article  Google Scholar 

  • Niu F, Lavender A, Cooper CM, Lee CA, Lenardic A, James DE (2004) Seismic constraints on the depth and composition of the mantle keel beneath the Kaapvaal craton. Earth Planet Sci Lett 224: 337–346

    Article  Google Scholar 

  • Owens TJ, Nyblade A, Gurrola H, Langston CA (2000) Mantle Transition Zone structure beneath Tanzania, East Africa. Geophys Res Lett 27: 827–830

    Article  Google Scholar 

  • Priestley K, Dabayle E, McKenzie D, Pilidou S (2006) Upper mantle structure of eastern Asia from multimode surface waveform tomography. J Geophys Res 111. doi: 10.1029/2005JB004082

    Google Scholar 

  • Rai, SS, Priestley K, Prakasam KS, Srinagesh D, Gaur VK Du Z (2003) Crustal Shear velocity structure of the south Indian shield. J Geophys Res 108: 2088. doi: 1029/2002JB001776

    Article  Google Scholar 

  • Rai SS, Priestley K, Gaur VK, Mitra S, Singh MP, Searle MP (2006) Configuration of the Indian Moho beneath the NW Himalaya and Ladakh. Geophys Res Lett 33: L15308. doi: 10.1029/2006GL026076

    Article  Google Scholar 

  • Revenaugh J, Jordan TH (1991) Mantle layering from ScS reverberations: 3. The upper mantle. J Geophys Res 96: 19781–19810

    Article  Google Scholar 

  • Replumaz A, Karson H, van der Hilst RD, Besse J, Tapponier P (2004) 4-D evolution of SE Asia’s mantle from geological reconstruction and seismic tomography. Earth Planet Sci Lett 221: 103–115

    Article  Google Scholar 

  • Ringwood AE (1994) Role of transition zone and 660 km discontinuity in the mantle dynamics. Phys Earth Planet Int 86: 5–24

    Article  Google Scholar 

  • Ritzwoller MH, Shapiro NM, Barmin MP, Levshin AL (2002) Global surface wave diffraction tomography. J Geophys Res 107. doi: 10.1029/2002JB001777

    Google Scholar 

  • Saul J, Kumar MR, Sarkar D (2000) Lithospheric and upper mantle structure of the Indian shield, from teleseismic receiver function. Geophys res Lett 27: 2357–2360

    Article  Google Scholar 

  • Simmons NA, Gurrola H (2000) Multiple seismic discontinuties near the base of the transition zone in the earth’s mantle. Nature 405: 559–562

    Article  Google Scholar 

  • Vacher P, Mocquet A, Sotin C (1998) Computation of seismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km discontinuity. Phys Earth Planet Int 106: 275–298

    Article  Google Scholar 

  • Van der Hilst DR (2004) Changing views on the earth’s mantle. Science 306: 817–818

    Article  Google Scholar 

  • van der Voo R, Spakman W, Bijwaard H (1999) Tethyan subducted slab under India. Earth Planet Sci Lett 171: 7–20

    Article  Google Scholar 

  • Wajeman N (1988) detection of underside reflections at mantle discontinuties by stacking broadband data. Geophys Res Lett 15: 669–672

    Article  Google Scholar 

  • Wittlinger G, Vergne J, Tapponier P, Farra V, Poupinet G, Jiang M, Su H, Herquel G, Paul A (2004) Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet. Earth Planet Sci Lett 221: 117–130

    Article  Google Scholar 

  • Yuen DA, Reuteler DM, Balachander S, Steinbach V, Smedsmo JJ (1994) various influences on three-dimensional mantle convection with phase transition. Phys Earth Planet Inter 86: 185–203

    Article  Google Scholar 

  • Zhang Z, Lay T (1993) Investigation of upper mantle discontinuities near northwestern Pacific subduction zones using precursors to sSH. J Geophys Res 98: 4389–4405

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam S. Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Indian National Science Academy, New Delhi

About this chapter

Cite this chapter

Rai, S.S., Suryaprakasam, K., Gaur, V.K. (2009). Seismic Imaging of the Mantle Discontinuities Beneath India: From Archean Cratons to Himalayan Subduction Zone. In: Gupta, A.K., Dasgupta, S. (eds) Physics and Chemistry of the Earth’s Interior. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0346-4_9

Download citation

Publish with us

Policies and ethics