Skip to main content

Post-perovskite Phase: Findings, Structure and Property

  • Chapter
Book cover Physics and Chemistry of the Earth’s Interior
  • 1975 Accesses

Abstract

Experimental study by (1994) on natural garnets in a laser-heated diamond-anvil under 30 GPa showed transformation of this phase to a new mineral having a perovskite like structure. Subsequently mineral physicists observed that all essential mantle minerals transformed to an assemblage comprising perovskite or rock salt like structure. While studying pyrolitic assemblage under lower mantle conditions, Hirose et al. observed that between 110 and 120 GPa a new phase appeared. It had a structure with Cmcm space group and was isostructural with UFeS3. It had a layered structure made up of two types of layers. One layer had a two-dimensional network of SiO6 octahedra, connected by edge or corner sharing along the direction of a and c axis. The other layer is formed by Mg cation.

The P-T condition or depth of transformation of perovskite to post-perovskite structure coincides with the D″ layer of the earth. As this layer shows seismic anisotropy, it has been postulated that materials with post-perovskite structure may have lattice preferred orientation (LOP). This paper also describes deformation experiments related to development of LOP in the material with post-perovskite structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Carrez P, Ferre D, Cordier P (2007) Implications for plastic flow in deep mantle from modelling dislocations in MgSiO3. Nature 446: 68–70

    Article  Google Scholar 

  • Hirose K, Kawamura K (2004) Discovery of post-perovskite phase transition in MgSiO3 and the earth’s lowermost mantle (in Japanese) Rev High Press Sci Tec 14: 265–274

    Article  Google Scholar 

  • Hirose K, Kawamura K, Ohishi Y, Tateno S, Sata N (2005) Stability and equation of state of MgGeO3 post-perovskite phase. Am Mineral 90: 262–265

    Article  Google Scholar 

  • Iitaka T, Hirose K, Kawamura K, Murkami M (2004) The elasticity of MgSiO3 post-persovskite phase in the earth’s lowermost mantle. Nature 430: 442–445

    Article  Google Scholar 

  • Kesson SE, Fitz Gerald JD, Shelly JM (1998) Mineralogy and dynamics of a pyrolite lower mantle. Nature 393: 252–255

    Article  Google Scholar 

  • Knittle E, Jeanloz R (1987) Synthesis and equation of state of (Mg,Fe)SiO3 perovskite to over 100 gigapascals. Science 235: 668–670

    Article  Google Scholar 

  • Kojitani H, Shirako Y, Akaogi M (2007) Post-perovskite phase transition in CaRuO3. Phys Earth Planet Inter 165: 127–134

    Article  Google Scholar 

  • Liu L (1974) Post oxide phases of Forsterite and Enstatite. Geophys Res Lett 2: 417–419

    Article  Google Scholar 

  • Liu HZ, Chen J, Hu J, Martin CD, Weidner DJ, Hausermann D, Mao HK (2005) Octahedral filing evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure. Geophys Res Lett 32. L04304

    Article  Google Scholar 

  • Merkel S, Kubo A, Miyagi L, Speziale S, Duffy TS, Mao HK, Wenk HR (2006) Plastic deformation of MgGeO3 post-perovskite at lower mantle pressures. Science 311: 644–646

    Article  Google Scholar 

  • Merkel S, McNamara AK, Kubo A, Speziale S, Miyagi L, Meng Y, Dyffy TS, Wenk HR (2007). Deformation of (Mg,Fe)SiO3 post-perovskite and D” anisotropy. Science 316: 1729–1732

    Article  Google Scholar 

  • Murakami K (2004) Phase Transitions of Lower Mantle Minerals and Its Geophysical Implications, Ph.D thesis, Tokyo Institute of Technology

    Google Scholar 

  • Murakami K, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Postperovskite phase transition in MgSiO3. Science 304: 855–858

    Article  Google Scholar 

  • Murakami M, Sinogeikin SV, Bass JD, Sata N, Ohishi Y, Hirose K (2007) Sound velocity of MgSiO3 post-perovskite phase: A constraint on the D”discontinuty. Earth Planet Sci Lett 259: 18–23

    Article  Google Scholar 

  • Niwa K, Yagi T, Ohgushi K, Merkel S, Miyajima N, Kikegawa T (2007) Lattice preferred orientation in CalrO3 perovskite and post-perovskite formed by plastic deformation under pressure. Phys Chem Minerals 34: 679

    Article  Google Scholar 

  • Okada T, Yagi T, Niwa K, Kikegawa T (2008) Phys Earth Planet Inter. submitted

    Google Scholar 

  • Oganov AR, Ono S (2004) Theoritical and experimental-evidence for a post-perovskite phase of MgSiO3 in earth’s D”layer. Nature 430: 445–448

    Article  Google Scholar 

  • Oganov AR, Martonak R, Laio A, Raiteri P, Parrinello M (2005) Anisotropy of earth’s D”layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 438: 1142–1144

    Article  Google Scholar 

  • Ohgushi K, Matsushita Y, Miyajima N, Katsuya Y, Tanaka M, Izumi F, Goto H, Ueda Y, Yagi T (2008) CaPtO3 as novel post-perovskite oxide. Phys Chem Minerals 35: 189

    Article  Google Scholar 

  • Ohta K, Onoda S, Hirose K, Sinmyo R, Shimizu K, Sata N, Ohishi Y, Yasuhara A (2008) The electrical conductivity of post-perovskite in earths D”layer. Science 320: 89–91

    Article  Google Scholar 

  • Ono S, Kikegawa T, Ohishi Y (2006) Structural properties of CalrO3-type MgSiO3 up to 144 GPa. Am Minera 19: 475–478

    Article  Google Scholar 

  • Shieh SR, Duffy TS, Kubo A, Shen G, Prakapenka VB, Sata N, Hirose K, Ohishi O (2006) Equation of state of the post-perovskite phase synthesised from a natural (Mg,Fe)SiO3 and CdGeO3 perovskite and the post-perovskite phase transition. Proc Natl Acad Sci 103: 3039–3043

    Article  Google Scholar 

  • Tateno S, Hirose K, Sata N, Ohishi Y (2005) High-pressure behavior of MnGeO3 and CdGeO3 perovskite and the post-perovskite phase transition. Phys Chem Mineral 32: 721–725

    Article  Google Scholar 

  • Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch RM (2004) Phase transition in MgSiO3 perovskite in the earth’s lower mantle. Earth Planet Sci Lett 224: 241–248

    Article  Google Scholar 

  • Watanuki T, Shimomura O, Yagi T, Kondo T, Isshiki M (2001) Construction of laser-heated diamond-anvil cell system for in-situ X-ray diffraction study at Spring-8. Rev Sci Instrum 72: 1289–1292

    Article  Google Scholar 

  • Yamazaki D, Yoshino T, Ohfuji H ando J, Yoneda A (2006) Origin of seismic anisotropy in the D” layer inferred from shear deformation experiments on post-perovskite phase. Earth Planet Sci Lett 252: 372–378

    Article  Google Scholar 

  • Yagi T, Mao HK, Bell PM (1978) Structure and crystal chemistry of post-perovskite type MgSiO3. Phys Chem Mineral 3: 97–110

    Article  Google Scholar 

  • Yagi T, Kondo T, Watanuki T, Shimomura O, Kikegawa T (2001) Laser heated diamond-anvil apparatus at the photon factory and SPring-8: Problems and improvements. Rev Sci Instrum 72: 1293–1296.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko Yagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Indian National Science Academy, New Delhi

About this chapter

Cite this chapter

Yagi, T. (2009). Post-perovskite Phase: Findings, Structure and Property. In: Gupta, A.K., Dasgupta, S. (eds) Physics and Chemistry of the Earth’s Interior. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0346-4_12

Download citation

Publish with us

Policies and ethics