Skip to main content

Models for Constraining Thermal Structure of the Indian Crust

  • Chapter
Physics and Chemistry of the Earth’s Interior
  • 1963 Accesses

Abstract

Knowledge of the thermal structure of the Indian crust is needed to unravel its geological history. The present thermal structure of the crust can be constructed using the available heat flow and radiogenic heat data with steady state heat conduction models. We have summarised several steady state heat conduction models with temperature dependent thermal conductivity and depth dependent radiogenic heat. Thermal models are also needed to study the influences of heat addition to the crust, reordering of heat sources, increase in the mantle heat flux and temperature, uplift and erosion and fluid transport in the Indian crust. We have also summarised several thermal models useful in constraining above processes. Applications of these models to the Indian shield have been done in some special cases which are also reviewed. It is emphasised that progress in deciphering actions of geological processes from signatures embedded in the Indian crust requires confronting thermal models of the processes with the geophysical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal PK, Pandey OP (1999) Relevance of hot underlying asthenosphere to the occurrence of Latur earthquake and Indian peninsular shield seismicity. J Geodynamics 28: 303–316

    Article  Google Scholar 

  • Agrawal PK, Pandey OP (2004) Unusual lithospheric structure and evolutionary pattern of the cratonic segments of the south Indian shield. Earth Planets Space 56: 139–150

    Google Scholar 

  • Bhattacharji S, Singh RN (1984) Thermo-mechanical structure of the southern part of the Indian shield and its relevance to Precambrian basin evolution. Tectonophys 105: 103–120

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in Solids. Oxford University Press, New York

    Google Scholar 

  • Clark SP (1980) Comment on “Erosion, uplift, exponential heat source distribution and transient heat flux” by TC Lee. J Geophys Res 85: 2694–2695

    Article  Google Scholar 

  • Ganguly J, Singh RN, Ramana DV (1995) Thermal perturbation during charnockitization and granulite facies metamorphism in southern India. J Metamorphic Geology 13: 419–430

    Article  Google Scholar 

  • Gliko AO, Singh RN, Swathi PS (1999) Physical approach to the problem of origin of charnockitic rocks of southern India: Mechanism of crustal heating and transfer of carbon dioxide. Russian J of Earth Science 1, No 5

    Google Scholar 

  • Gupta ML (1995) Thermal regime of the Indian shield, In: Gupta ML, Yamano M (eds) Terrestrial heat flow and geothermal energy in Asia, Oxford and IBH Publishing Co

    Google Scholar 

  • Gupta ML, Sunder A, Sharma SR (1991) Heat flow and heat generation in the Archean Dharwar cratons and implications for the southern Indian shield geotherm and lithospheric thickness. Tectonophysics 194: 107–122

    Article  Google Scholar 

  • Gupta ML, Gaur VK (1984) Surface heat flow and possible evolution of Deccan volcanism. Tectonophysics 105: 309–318

    Article  Google Scholar 

  • Haxby WF, Turcotte DL (1976) Stresses induced by addition or removal of overburden and associated thermal effects. Geology 4: 81–184

    Article  Google Scholar 

  • Khan A, Connolly JAD, Olsen N (2006) Constraining the composition and thermal state of the mantle beneath Europe from inversion of long-period electromagnetic sounding data. J Geophys Res 111, B10102, doi: 10.1029/2006JB004270

    Article  Google Scholar 

  • Kronrod VA, Kuskov OL (2007) Modelling of the thrmal structure of continental lithosphere. Izvestia, Physics of the Solid Earth 43: 91–101

    Article  Google Scholar 

  • Kumar PS, Reddy GK (2004) Radioelements and heat production of an exposed Archean crustal cross-section, Dharwar craton, south India. Earth Planet Sci Lett 224: 309–324

    Article  Google Scholar 

  • Kumar PS, Menon R, Reddy GK (2007a) The radiogenic heat production in the thermal evolution of a proterozoic granulite-facies orogenic belt: Eastern Ghats, Indian shield. Earth Planet Sci Lett 254: 39–54

    Article  Google Scholar 

  • Kumar PS, Menon R, Reddy GK (2007b) Crustal geotherm in southern Deccan basalt province, India: The Moho is as cold as adjoining cratons. Geol Soc Am Special Paper 430

    Google Scholar 

  • Lee TC (1980) Erosion, uplift, exponential heat source distribution and transient heat flux. J Geophys Res 84: 585–590

    Article  Google Scholar 

  • Manglik A (1993) Movement of phase boundaries and thermorheological evolution of lithosphere, PhD Thesis, OU, Hyderabad

    Google Scholar 

  • Manglik A (2004) Rheological modelling of the Indian continental lithosphere. Himalayan Geology 26: 165–173

    Google Scholar 

  • Manglik A (2006) Mantle heat flow and thermal structure of the northern block of Southern Granulite Terrain, India. J Geodynamics 41: 510–519

    Article  Google Scholar 

  • Manglik A, Singh RN (1991) Rheology of Indian continental crust and upper mantle. Proc Ind Acad Sci (Earth Planet Sci) 100: 389–398

    Google Scholar 

  • Manglik A, Singh RN (1992) Rheological thickness and strength of Indian continental lithosphere. Proc Ind Acad Sci (EPS) 101: 339–345

    Google Scholar 

  • Manglik A, Singh RN (1999) Rheological stratification of the Indian continental lithosphere: Role of diffusion creep, Proc Indian Acad Sci (EPS) 108: 15–21

    Google Scholar 

  • Manglik A, Singh RN (2002) Thermomechanical structure of the central Indian shield: Constraints from deep crustal seismicity. Curr Sci 82: 1151–1157

    Google Scholar 

  • Mareschal JC (1991) Determination of past heat flow from subsidence data in intercratonic basins and passive margins. In: Cermak V, Ryback L (eds) Terrestrial heat flow and lithosphere structure, Springer, Berlin

    Google Scholar 

  • McKenzie DP (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40: 25–32

    Article  Google Scholar 

  • Negi JG, Agrawal PK, Pandey OP (1987) Large variation of Curie-depth and lithospheric thickness in Indian sub-continent and a case for magnetothermometry. Geophys J Roy Astr Soc 88: 763–775

    Google Scholar 

  • Negi JG, Agrawal PK, Pandey OP (1986) Super mobility of hot Indian lithosphere. Tectonophysics 131: 147–156

    Article  Google Scholar 

  • Ozisik MN (1993) Heat conduction, 2nd Edition. John Wiley and Sons

    Google Scholar 

  • Pandey OP, Agrawal PK (1999) Lithospheric mantle deformation beneath the Indian cratons. J Geology 107: 683–692

    Article  Google Scholar 

  • Pandey OP, Agrawal PK, Chetty TRK (2002) Unusual lithospheric structure beneath the Hyderabad granite region, Eastern Dharwar craton, South India. Phys Earth Planet Inter 130: 59–69

    Article  Google Scholar 

  • Priestley K, McKenzie D (2006) The thermal structure of the lithosphere from shear wave velocities. Earth Planet Sci Lett 244: 285–301

    Article  Google Scholar 

  • Rai SN, Thiagarajan S, Ramana DV (2003) Seismically constrained 2-D thermal model of Central India along Hirapur-Mandla Deep Seismic Sounding profile across the Narmada Son Lineament. Curr Sci 85: 208–213

    Google Scholar 

  • Rai SN, Thiagarajan S (2006) A tentative 2D thermal model of central India across the Narmada-Son Lineament (NSL). J Asian Earth Sci 28: 363–371

    Article  Google Scholar 

  • Rai SN, Thiagarajan S (2007) 2-D crustal thermal structure along Thuadara-Sindad DSS profile across Narmada-Son Lineament, Central India. J Earth Syst Sci 116: 347–355

    Article  Google Scholar 

  • Ramana DV, Thiagarajan S, Singh RN (1999) Thermal modelling along the Kavali-Udipi profile in southern Indian shield. Acta Geophysica Polonica 47: 423–433

    Google Scholar 

  • Ramana DV, Thiagarajan S, Rai SN (2003) Crustal thermal structure of the Godavari graben and coastal basin. Curr Sci 84: 1116–1122

    Google Scholar 

  • Rao RUM, Rao GV, Narain H (1976) Radioactive heat generation and heat flow in Indian region. Earth Planet Sci Lett 30: 57–64

    Article  Google Scholar 

  • Rao RUM, Roy S, Srinivasan R (2003) Heat flow researches in India: Results and Perspectives. In: Mahadevan TM, Arora BR, Gupta KR (eds) Indian Continental Lithosphere: Emerging research Trends. Memoir Geol Soc India 53: 347–391

    Google Scholar 

  • Roy S, Rao RUM (1999) Geothermal investigations in 1993 Latur earthquake area, Deccan Volcanic Province, India. Tectonophysics 306: 237–252

    Article  Google Scholar 

  • Roy S, Rao RUM (2003) Towords a crustal thermal model for the Archean Dharwar craton. Phys Chem Earth 28: 361–373

    Google Scholar 

  • Saltus RW, Lachenbruch AH (1991) Thermal evolution of the Sierra Nevada: Tectonic implications of new heat flow data. Tectonics 10: 325–344

    Article  Google Scholar 

  • Sandiford M, McLaren S (2002) Tectonic feedback and ordering of heat producing elements within the continental lithosphere Earth Planet Sci Lett 204: 133–150

    Article  Google Scholar 

  • Sandiford M, van Kranendonk MJ, Bodoros S (2004) Conductive incubation and the origin of dome-andkeel structure in Archaen granite-greenstone terrains: A model based on the eastern Pilbara Craton, Western Australia. Tectonics 23 TC 1009. doi: 10.1029/2002TC001452

    Google Scholar 

  • Singh RN, Negi JG (1980) Comment on “Erosion, uplift, exponential heat source distribution and transient heat flux” by TC Lee. J Geophys Res 85: 2696–2697

    Article  Google Scholar 

  • Singh RN (1981) State of stress in the northern part of the Indian plate. In: Gupta HK, Delany FM (eds) Zagros, Hindukush, Himalaya Geodynamic Evolution, AGU, Washington and GSA, Boulder

    Google Scholar 

  • Singh RN (1984) Thermal evolution of the Indian shield and subjacent mantle. Tectonophys 105: 413–418

    Article  Google Scholar 

  • Singh RN (1985) Thermal structure of the Indian shield. Ind J Earth Sci 12: 155–158

    Google Scholar 

  • Singh RN (2007) Modelling erosion induced subsurface thermal changes and tectonic consequences. Jour Geol Soc Ind 70: 489–498

    Google Scholar 

  • Singh RN, Negi JG (1982) High moho temperature in the Indian shield. Tectonophysics 82: 299–306

    Article  Google Scholar 

  • Sleep NH, Snell NS (1976) Thermal contraction and flexure of mid-continent and Atlantic marginal basins. Geophys J R Astron Soc 45: 125–154

    Google Scholar 

  • Srivastava K, Singh RN (1998) A model for temperature variations in sedimentary basins due to random radiogenic heat sources. Geophysical J Int 135: 727–730

    Article  Google Scholar 

  • Srivastava K, Singh RN (1999a) Influence of random thermal conductivity on the subsurface temperature fluctuations. J Geophysics 20: 89–92

    Google Scholar 

  • Srivastava K, Singh RN (1999b) A stochastic model to quantify the steady state crustal geotherms subject to uncertainty in thermal conductivity. Geophy J Int 138: 895–899

    Article  Google Scholar 

  • Thiagarajan S (2002) Two-dimensional modelling of crustal thermal structure along selected deep seismic sounding profiles with Indian region, Ph D Thesis, OU, Hyderabad

    Google Scholar 

  • Thiagarajan S, Ramana DV, Rai SN (2001) seismically constrained two-dimensional crustal thermal structure of the Cambay basin. Proc Ind Acad Sci (EPS) 110: 1–8

    Google Scholar 

  • Woodhouse J, Birch F (1980) Comment on “Erosion, uplift, exponential heat source distribution and transient heat flux” by TC Lee. J Geophys Res 85: 2691–2693.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Indian National Science Academy, New Delhi

About this chapter

Cite this chapter

Singh, R.N. (2009). Models for Constraining Thermal Structure of the Indian Crust. In: Gupta, A.K., Dasgupta, S. (eds) Physics and Chemistry of the Earth’s Interior. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0346-4_10

Download citation

Publish with us

Policies and ethics