Skip to main content

MRI of Hydrocephalus and CSF Velocity Imaging

  • Chapter
  • First Online:
Functional Neuroradiology

Abstract

Cerebrospinal fluid (CSF) is produced at a rate of 500 ml/day by the choroid plexus within the ventricular system [1]. Normally, it flows out the foramina of Lushka and Magendie of the fourth ventricle into the subarachnoid space (SAS). From there, the CSF normally flows up over the convexities to be absorbed by the arachnoidal granulations and villi on either side of the superior sagittal sinus (Fig. 46.1). Obstruction to the outflow of CSF leads to back up and ventricular enlargement or “hydrocephalus” [2]. If the obstruction is between the choroid plexus and the outlet foramina of the fourth ventricle, it is called “obstructive” hydrocephalus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lorenzo AV, Page LK, Watters GV. Relationship between cerebrospinal fluid formation, absorption and pressure in human hydrocephalus. Brain. 1970;93:679–92.

    Article  PubMed  CAS  Google Scholar 

  2. Bradley WG, Quencer RM. Hydrocephalus and cerebrospinal fluid flow. In: Stark DD, Bradley WG, editors. Magnetic resonance imaging. 3rd ed. St. Louis: Mosby; 1999. p. 1483–508.

    Google Scholar 

  3. Bradley WG, Kortman KE, Burgoyne B. Flowing cerebrospinal fluid in normal and hydrocephalic states: appearance on MR images. Radiology. 1986;159:611–6.

    PubMed  Google Scholar 

  4. Sherman JL, Citrin CM. Magnetic resonance demonstration of normal CSF flow. AJNR Am J Neuroradiol. 1986;7:3–6.

    PubMed  CAS  Google Scholar 

  5. Citrin CM, Sherman JL, Gangarosa RE, et al. Physiology of the CSF flow-void sign: modification by cardiac gating. AJNR Am J Neuroradiol. 1986;7:1021–4.

    Google Scholar 

  6. Bradley WG. Flow phenomenon. In: Stark DD, Bradley WG, editors. Magnetic resonance imaging. 3rd ed. St. Louis: Mosby; 1999. Ch 3.

    Google Scholar 

  7. Bradley WG, Whittemore AR, Kortman KE, Homyak M, Teresi LM, Davis SJ. Marked CSF flow void: an indicator of successful shunting in patients with suspected normal pressure hydrocephalus. Radiology. 1991;178:459–66.

    PubMed  Google Scholar 

  8. Bradley WG. MRI of the brainstem, a practical approach. Radiology. 1991;179:319–32.

    PubMed  Google Scholar 

  9. Fisher CM. The clinical picture in occult hydrocephalus. Clin Neurosurg. 1977;24:270–84.

    PubMed  CAS  Google Scholar 

  10. McMillan JJ, Williams B. Aqueduct stenosis. J Neurol Neurosurg Psychiatry. 1977;40:521–32.

    Article  PubMed  CAS  Google Scholar 

  11. Barkovich AJ, Newton TH. MR of aqueductal stenosis: evidence of a broad spectrum of tectal distortion. AJNR Am J Neuroradiol. 1989;30:471.

    Google Scholar 

  12. McMillan JJ, Williams B. Aqueduct stenosis. J Neurol Neurosurg Psychiatry. 1977;40(6):521–32.

    Article  PubMed  CAS  Google Scholar 

  13. Gideon P, Stahlberg F, Thomsen C, et al. Cerebrospinal fluid flow and production in patients with normal pressure hydrocephalus studied by MRI. Neuroradiology. 1994;36:210.

    Article  PubMed  CAS  Google Scholar 

  14. Bradley WG. Hydrocephalus. In: Bradley WG, Bydder GM, editors. MRI atlas of the brain. New York: Raven; 1990.

    Google Scholar 

  15. Bradley WG. Diagnostic tools in hydrocephalus. Neurosurg Clin North Am. 2001;36(4):661–84.

    Google Scholar 

  16. Greitz D, Greitz T, Hindmarsh T. A new view on the CSF-circulation with the potential for pharmacological treatment of childhood hydrocephalus. Acta Paediatr. 1997;86:125–32.

    Article  PubMed  CAS  Google Scholar 

  17. Penar PL, Lakin WD, Yu J. Normal pressure hydrocephalus: an analysis of etiology and response to shunting based on mathematical modeling. Neurol Res. 1995;17:83–8.

    PubMed  CAS  Google Scholar 

  18. Portnoy H, Branch C, Castro ME. The relationship of intracranial venous pressure to hydrocephalus. Childs Nerv Syst. 1994;10:29–35.

    Article  PubMed  CAS  Google Scholar 

  19. Castro ME, Portnoy HD, Maesaka J. Elevated cortical venous pressure in hydrocephalus. Neurosurgery. 1991;29:232–8.

    Article  PubMed  CAS  Google Scholar 

  20. Papaiconomou C, Zakharov A, Azizi N, Djenic J, Johnston M. Reassessment of the pathways responsible for cerebrospinal fluid absorption in the neonate. Childs Nerv Syst. 2004;20(1):29–36.

    Article  PubMed  CAS  Google Scholar 

  21. Kendall B, Holland I. Benign communicating hydrocephalus in children. Neuroradiology. 1981;21:93–6.

    Article  PubMed  CAS  Google Scholar 

  22. Prassopoulos P, Cavouras D, Golfinopoulos S, et al. Size of the intra- and extraventricular cerebrospinal fluid compartments in children with idiopathic benign widening of the frontal subarachnoid space. Neuroradiology. 1995;37:418.

    Article  PubMed  CAS  Google Scholar 

  23. Bradley WG, Bahl G, Alksne JF. Idiopathic normal pressure hydrocephalus may be a “two hit” disease: benign external hydrocephalus in infancy followed by deep white matter ischemia in late adulthood. JMRI. 2006;24:747–55.

    Article  PubMed  Google Scholar 

  24. Hakim S. Some observations on CSF pressure: hydrocephalic syndrome in adults with normal CSF pressure. Thesis No. 957, Javerian University, School of Medicine, Bogota, Columbia, 1964.

    Google Scholar 

  25. Adams RD, Fisher CM, Hakim S, et al. Symptomatic occult hydrocephalus with normal cerebrospinal fluid pressure: a treatable syndrome. N Engl J Med. 1965;273:117–26.

    Article  PubMed  CAS  Google Scholar 

  26. Hakim S, Adams RD. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. J Neurol Sci. 1965;2:307–27.

    Article  PubMed  CAS  Google Scholar 

  27. Conner ES, Black PML, Foley L. Experimental normal pressure hydrocephalus is accompanied by increased transmantle pressure. J Neurosurg. 1984;61:322–8.

    Article  PubMed  CAS  Google Scholar 

  28. Fisher CM. The clinical picture in occult hydrocephalus. Clin Neurosurg. 1977;24:270–84.

    PubMed  CAS  Google Scholar 

  29. Vassilouthis J. The syndrome of normal-pressure hydrocephalus. J Neurosurg. 1984;61:501–9.

    Article  PubMed  CAS  Google Scholar 

  30. Vanneste JAL, Augustijn P, Dirven C, et al. Shunting normal pressure hydrocephalus: do the benefits outweigh the risks? A Multicenter study and literature review. Neurology. 1992;42:54–9.

    PubMed  CAS  Google Scholar 

  31. Vanneste JAL. Three decades of normal pressure hydrocephalus: are we wiser now? J Neurol Neurosurg Psychiatry. 1994;57:1021–5.

    Article  PubMed  CAS  Google Scholar 

  32. Black PMcL, Ojemann RG, Tzouras A. CSF shunts for dementia, incontinence, and gait disturbance. Clin Neurosurg. 1985;32:632–51.

    PubMed  CAS  Google Scholar 

  33. Spetzler RF. Barrow Quarterly. 2003;19(2):1.

    Google Scholar 

  34. Jacobs L, Conti D, Kinkel WR, et al. Normal pressure hydrocephalus. JAMA. 1976;235:510–2.

    Article  PubMed  CAS  Google Scholar 

  35. Greenberg JO, Shenkin HA, Adam R. Idiopathic normal pressure hydrocephalus: a report of 73 patients. J Neurol Neurosurg Psychiatry. 1977;40(4):336–41.

    Article  PubMed  CAS  Google Scholar 

  36. Hebb AO, Cusimano MD. Idiopathic normal pressure hydrocephalus: a systematic review of diagnosis and outcome. Neurosurgery. 2001;49(5):1166–84.

    PubMed  CAS  Google Scholar 

  37. Little AS, Zabramski JM, Peterson M, Goslar PW, Wait SD, Albuquerque FC, et al. Ventriculoperitoneal shunting after aneurysmal subarachnoid hemorrhage: analysis of the indications, complications, and outcome with a focus on patients with borderline ventriculomegaly. Neurosurgery. 2008;62(3):618–27.

    Article  PubMed  Google Scholar 

  38. DeVito EE, Salmond CH, Owler BK, et al. Caudate structural abnormalities in idiopathic normal pressure hydrocephalus. Acta Neurol Scand. 2007;116(5):328–32.

    Article  PubMed  CAS  Google Scholar 

  39. Osuka S, Matsushita A, Yamamoto T, et al. Evaluation of ventriculomegaly using diffusion tensor imaging: correlations with chronic hydrocephalus and atrophy. J Neurosurg. Published online August 21, 2009; doi: 10.3171/2009.7.JNS09550.

  40. Bradley WG, Whittemore AR, Watanabe AS, et al. Association of deep white matter infarction with chronic communicating hydrocephalus: implications regarding the possible origin of normal pressure hydrocephalus. AJNR Am J Neuroradiol. 1991;12:31–9.

    PubMed  Google Scholar 

  41. Kitagaki H, Mori E, Ishii K, Yamaji S, Hirono N, Imamura T. CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol. 1998;19(7):1277–84.

    PubMed  CAS  Google Scholar 

  42. Chen YF, Wang YH, Hsiao JK, et al. Normal pressure hydrocephalus: cerebral hemodynamic, metabolism measurement, discharge score, and long-term outcome. Surg Neurol. 2008;70 Suppl 1:S1:69–77.

    Google Scholar 

  43. Lenfeldt N, Hauksson J, Birgander R, et al. Improvement after cerebrospinal fluid drainage is related to levels of N-acetyl-aspartate in idiopathic normal pressure hydrocephalus. Neurosurgery. 2008;62(1):135–42.

    Article  PubMed  Google Scholar 

  44. Tator CH, Fleming JFR, Shepad RD, et al. A radioscopic test for communicating hydrocephalus. J Neurosurg. 1968;28:237.

    Google Scholar 

  45. Fisher CM. Communicating hydrocephalus. Lancet. 1978;1:37.

    Article  PubMed  CAS  Google Scholar 

  46. Wood JH, Bartlet D, James AE, Udvarhelyi GB. Normal-pressure hydrocephalus: diagnosis and patient selection for shunt surgery. Neurology. 1974;24:517–25.

    PubMed  CAS  Google Scholar 

  47. Wikkelso C, Andersson H, Blomstrand C, Lindqvuist G. The clinical effect of lumbar puncture in normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 1982;45:64–9.

    Article  PubMed  CAS  Google Scholar 

  48. Wikkelso C, Andersson H, Blomstrand C, et al. Normal pressure hydrocephalus: predictive value of the cerebrospinal fluid tap-test. Acta Neurol Scand. 1986;3:566–73.

    Article  Google Scholar 

  49. Malm J, Kristensen B, Karlsson T, et al. The predictive value of cerebrospinal fluid dynamic tests in patients with the idiopathic adult hydrocephalus syndrome. Arch Neurol. 1995;52:783–9.

    PubMed  CAS  Google Scholar 

  50. Vanneste JAL. Diagnosis and management of normal-pressure hydrocephalus. J Neurol. 2000;247:5–14.

    Article  PubMed  CAS  Google Scholar 

  51. Borgesen SE, Gjerris F. The predictive value of conductance to outflow of cerebrospinal fluid in normal pressure hydrocephalus. Brain. 1982;105:65–86.

    Article  PubMed  CAS  Google Scholar 

  52. Boon AJW, Tans JThJ, Delwel EJ, et al. Does CSF outflow resistance predict the response to shunting in patients with normal pressure hydrocephalus? Acta Neurochir. 1998;71:331–3.

    CAS  Google Scholar 

  53. Nitz WR, Bradley WG, Watanabe AS, et al. Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology. 1992;183:395–405.

    PubMed  CAS  Google Scholar 

  54. Bradley WG, Scalzo D, Queralt J, et al. Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology. 1996;198:523–9.

    PubMed  Google Scholar 

  55. Scollato A, Tenenbaum R, Bahl G, Celerini M, Salani B, Di Lorenzo N. Changes in aqueductal CSF stroke volume and progression of symptoms in patients with unshunted idiopathic normal pressure hydrocephalus. AJNR Am J Neuroradiol. 2008;29(1):192–7.

    Article  PubMed  CAS  Google Scholar 

  56. Bradley WG, Chen DY, Baronofsky ID, O’Malley PJ, Wee T-A, Yeh MM-Y. Diagnosis of aqueductal stenosis in the elderly using CSF velocity imaging and high resolution thin slice sagittal MR imaging. Radiology. 2001;221(P):616.

    Google Scholar 

  57. Bradley WG. Diagnostic tools in hydrocephalus. Diagn Clin Neurosurg North Am. 2001;36:661–84.

    Google Scholar 

  58. Bradley WG. Cerebrospinal fluid dynamics and shunt responsiveness in patients with normal-pressure hydrocephalus. Mayo Clin Proc. 2002;77:507–8.

    Article  PubMed  Google Scholar 

  59. Bradley WG, Safar FG, Furtado C, Ord J, Alksne J. Increased intracranial volume in normal pressure hydrocephalus: a clue to the etiology of “idiopathic” NPH? AJNR. 2004;25(9):1479–84.

    PubMed  Google Scholar 

  60. Koto A, Rosenberg G, Zingesser LH, et al. Syndrome of normal pressure hydrocephalus: possible relation to hypertensive and arteriosclerotic vasculopathy. J Neurol Neurosurg Psychiatry. 1977;40:73–9.

    Article  PubMed  CAS  Google Scholar 

  61. Graff-Radford NR, Godersky JC. Idiopathic normal pressure hydrocephalus and systemic hypertension. Neurology. 1987;37:868–71.

    PubMed  CAS  Google Scholar 

  62. Kizu O, Yamada K, Nishimura T. Proton chemical shift imaging in normal pressure hydrocephalus. AJNR Am J Neuroradiol. 2001;22(9):1659–64.

    PubMed  CAS  Google Scholar 

  63. Marshall VG, Bradley WG, Marshall CE, Bhoopat T, Rhodes RH. Deep white matter infarction: correlation of MR imaging and histopathologic findings. Radiology. 1988;167:517–22.

    PubMed  CAS  Google Scholar 

  64. Anik Y, Demirci A, Anik I, et al. Apparent diffusion coefficient and cerebrospinal fluid flow measurements in patients with hydrocephalus. J Comput Assist Tomogr. 2008;32(3):392–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William G. Bradley Jr. MD, PhD, FACR .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bradley, W.G. (2011). MRI of Hydrocephalus and CSF Velocity Imaging. In: Faro, S., Mohamed, F., Law, M., Ulmer, J. (eds) Functional Neuroradiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0345-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0345-7_46

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0343-3

  • Online ISBN: 978-1-4419-0345-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics