Skip to main content

DTI and fMRI: Review of Complementary Techniques

  • Chapter
  • First Online:
Book cover Functional Neuroradiology

Abstract

This chapter discusses how the combination of blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) can be used for presurgical mapping of brain lesions such as brain tumors. The need to map both eloquent cortex and eloquent white matter in a complementary manner will be stressed. Both the underlying physical principles and the clinical applications of BOLD fMRI and DTI will be explained in detail with inclusion of several clinical examples that illustrate how the integration of these techniques is practically utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 1990;87:9868–72.

    Article  PubMed  CAS  Google Scholar 

  2. Blamire AM, Ogawa S, Ugurbil K, et al. Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. Proc Natl Acad Sci USA. 1992;89:11069–73.

    Article  PubMed  CAS  Google Scholar 

  3. Turner R, Le Bihan D, Moonen CT, Despres D, Frank J. Echo-planar time course MRI of cat brain oxygenation changes. Magn Reson Med. 1991;22:159–66.

    Article  PubMed  CAS  Google Scholar 

  4. Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci. 2002;3:142–51.

    Article  PubMed  CAS  Google Scholar 

  5. Vanzetta I, Grinvald A. Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science. 1999;5444:1555–7.

    Article  Google Scholar 

  6. Detre JA, Wang J. Technical aspects and utility of fMRI using BOLD and ASL. Clin Neurophysiol. 2002;113:621–34.

    Article  PubMed  Google Scholar 

  7. Fox PT, Raichle ME, Mintun MA, Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988;241:462–4.

    Article  PubMed  CAS  Google Scholar 

  8. Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS. Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med. 1993;30:161–73.

    Article  PubMed  CAS  Google Scholar 

  9. Pillai J. The evolution of clinical functional imaging during the past 2 decades and its current impact on neurosurgical planning. AJNR Am J Neuroradiol. 2010;31:219–25.

    Article  PubMed  CAS  Google Scholar 

  10. Petrella JR, Shah LM, Harris KM, et al. Preoperative functional MR imaging localization of language and motor areas: effect on therapeutic decision making in patients with potentially resectable brain tumors. Radiology. 2006;240:793–802.

    Article  PubMed  Google Scholar 

  11. Holodny AI. Preoperative and postoperative mapping of eloquent regions in the brain. ASNR 2004:33–6.

    Google Scholar 

  12. Liu T, Frank L, Wong E, Buxton R. Detection power, estimation efficiency, and predictability in event-related fMRI. Neuroimage. 2001;13:759–73.

    Article  PubMed  CAS  Google Scholar 

  13. Bogomolny DL, Petrovich NM, Hou BL, et al. Functional MRI in the brain tumor patient. Top Magn Reson Imaging. 2004;15:325–35.

    Article  PubMed  Google Scholar 

  14. Pujol J, Conesa G, Deus J, et al. Presurgical identification of the primary sensorimotor cortex by functional magnetic resonance imaging. J Neurosurg. 1996;84:7–13.

    Article  PubMed  CAS  Google Scholar 

  15. Boecker H, Kleinschmidt A, Requardt M, et al. Functional cooperativity of human cortical motor areas during self-paced simple finger movements. A high-resolution MRI study. Brain. 1994;117:1231–9.

    Article  PubMed  Google Scholar 

  16. Wexler BE, Fulbright RK, Lacadie CM, et al. An fMRI study of the human cortical motor system response to increasing functional demands. Magn Reson Imaging. 1997;15:385–96.

    Article  PubMed  CAS  Google Scholar 

  17. Kocak M. Functional MR imaging of the motor homunculus: toward optimizing paradigms. Proceedings of the American Society of Neuroradiology, Vancouver, Canada. May 13–17, 2002.

    Google Scholar 

  18. Yetkin FZ, Mueller WM, Hammeke TA, Morris 3rd GL, Haughton VM. Functional magnetic resonance imaging mapping of the sensorimotor cortex with tactile stimulation. Neurosurgery. 1995;36:921–5.

    Article  PubMed  CAS  Google Scholar 

  19. Engström M, Ragnehed M, Lundberg P, Söderfeldt B. Paradigm design of sensory-motor and language tests in clinical fMRI. Neurophysiol Clin. 2004;34:267–77.

    Article  PubMed  Google Scholar 

  20. Yetkin FZ, Swanson S, Fischer M, et al. Functional MR of frontal lobe activation: comparison with Wada language results. AJNR Am J Neuroradiol. 1998;19:1095–8.

    PubMed  CAS  Google Scholar 

  21. Salvan CV, Ulmer JL, DeYoe EA, et al. Visual object agnosia and pure word alexia: correlation of functional magnetic resonance imaging and lesion localization. J Comput Assist Tomogr. 2004;28:63–7.

    Article  PubMed  Google Scholar 

  22. Pillai JJ, Araque JM, Allison JD, et al. Functional MRI study of semantic and phonological language processing in bilingual subjects: preliminary findings. Neuroimage. 2003;19:565–76.

    Article  PubMed  Google Scholar 

  23. Bookheimer SY, Zeffiro TA, Blaxton TA, et al. Regional cerebral blood flow during auditory responsive naming: evidence for cross-modality neural activation. Neuroreport. 1998;9:2409–13.

    Article  PubMed  CAS  Google Scholar 

  24. Thulborn KR, Carpenter PA, Just MA. Plasticity of language-­related brain function during recovery from stroke. Stroke. 1999;30:749–54.

    Article  PubMed  CAS  Google Scholar 

  25. Phillips MD, Lowe MJ, Lurito JT, Dzemidzic M, Mathews VP. Temporal lobe activation demonstrates sex-based differences during passive listening. Radiology. 2001;220:202–7.

    PubMed  CAS  Google Scholar 

  26. FitzGerald DB, Cosgrove GR, Ronner S, et al. Location of language in the cortex: a comparison between functional MR imaging and electrocortical stimulation. AJNR Am J Neuroradiol. 1997;18:1529–39.

    PubMed  CAS  Google Scholar 

  27. Sereno MI, Dale AM, Reppas JB, et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science. 1995;268:889–93.

    Article  PubMed  CAS  Google Scholar 

  28. DeYoe EA, Carman GJ, Bandettini P, et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci USA. 1996;93:2382–6.

    Article  PubMed  CAS  Google Scholar 

  29. Golby AJ, Poldrack RA, Brewer JB, et al. Material-specific lateralization in the medial temporal lobe and prefrontal cortex during memory encoding. Brain. 2001;124:1841–54.

    Article  PubMed  CAS  Google Scholar 

  30. Golby AJ, Poldrack RA, Illes J, et al. Memory lateralization in medial temporal lobe epilepsy assessed by functional MRI. Epilepsia. 2002;43:855–63.

    Article  PubMed  Google Scholar 

  31. Yetkin FZ, Mueller WM, Morris GL, et al. Functional MR activation correlated with intraoperative cortical mapping. AJNR Am J Neuroradiol. 1997;18:1311–5.

    PubMed  CAS  Google Scholar 

  32. Roux FE, Boulanouar K, Ranjeva JP, et al. Cortical intraoperative stimulation in brain tumors as a tool to evaluate spatial data from motor functional MRI. Invest Radiol. 1999;34:225–9.

    Article  PubMed  CAS  Google Scholar 

  33. Wu JS, Zhou LF, Chen W, et al. Prospective comparison of ­functional magnetic resonance imaging and intraoperative motor evoked potential monitoring for cortical mapping of primary motor areas. Zhonghua wai ke za zhi [Chin J Surg]. 2005;43:1141–5.

    Google Scholar 

  34. Gaillard WD. Functional MR imaging of language, memory, and sensorimotor cortex. Neuroimag Clin N Am. 2004;14:471–85.

    Article  Google Scholar 

  35. Thomason ME, Foland LC, Glover GH. Calibration of BOLD fMRI using breath holding reduces group variance during a cognitive task. Hum Brain Mapp. 2007;28:59–68.

    Article  PubMed  Google Scholar 

  36. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259–67.

    Article  PubMed  CAS  Google Scholar 

  37. Thomsen C, Henriksen O, Ring P. In vivo measurement of water self diffusion in the human brain by magnetic resonance imaging. Acta Radiol. 1987;28:353–61.

    Article  PubMed  CAS  Google Scholar 

  38. Ebisu T, Naruse S, Horikawa Y, et al. Discrimination between different types of white matter edema with diffusion-weighted MR imaging. J Magn Reson Imaging. 1993;3:863–8.

    Article  PubMed  CAS  Google Scholar 

  39. Arfanakis K, Haughton VM, Carew JD, et al. Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol. 2002;23:794–802.

    PubMed  Google Scholar 

  40. Tien R, Felseberg G, Friedman H, et al. MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. AJR Am J Roentgenol. 1994;162:671–7.

    PubMed  CAS  Google Scholar 

  41. Stejskal EO, Tanner JE. Spin diffusion measurement: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288.

    Article  CAS  Google Scholar 

  42. Pierpaoli C, Jezzard P, Basser PJ, et al. Diffusion tensor MR ­imaging of the human brain. Radiology. 1996;201:637–48.

    PubMed  CAS  Google Scholar 

  43. Shimony JS, McKinstry RC, Akbudak E, et al. Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. Radiology. 1999;212:770–84.

    PubMed  CAS  Google Scholar 

  44. Chenevert TL, Brunberg JA, Pipe JG. Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology. 1990;177:401–5.

    PubMed  CAS  Google Scholar 

  45. Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med. 1999;42:526–40.

    Article  PubMed  CAS  Google Scholar 

  46. Berman JI, Berger MS, Mukherjee P, et al. Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg. 2004;101:66–72.

    Article  PubMed  Google Scholar 

  47. Guye M, Parker GJ, Symms M, et al. Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. Neuroimage. 2003;19:1349–60.

    Article  PubMed  Google Scholar 

  48. Mori S, Van Zijl PC. Fiber tracking: principles and strategies – a technical review. NMR Biomed. 2002;15:468–80.

    Article  PubMed  Google Scholar 

  49. Parker GJ, Haroon HA, Wheeler-Kingshott CA. A framework for a streamline based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J Magn Reson Imaging. 2003;18:242–54.

    Article  PubMed  Google Scholar 

  50. Lazar M, Alexander AL. Bootstrap white matter tractography (BOOT-TRAC). Neuroimage. 2005;24:524–32.

    Article  PubMed  Google Scholar 

  51. Mori S, Crain BJ, Chacko VP, Van Zijl PCM. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45:265–9.

    Article  PubMed  CAS  Google Scholar 

  52. Wakana S, Jiang H, Nagae-Poetscher LM, Van Zijl PC, Mori S. Fiber tract-based atlas of human white matter anatomy. Radiology. 2004;230:77–87.

    Article  PubMed  Google Scholar 

  53. Jones DK, Horsfield MA, Simmons A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med. 1999;42:515–25.

    Article  PubMed  CAS  Google Scholar 

  54. Witwer BP et al. Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J Neurosurg. 2002;97:568–75.

    Article  PubMed  Google Scholar 

  55. Bürgel U, Mädler B, Honey CR, Thron A, Gilsbach J, Coenen VA. Fiber tracking with distinct software tools results in a clear diversity in anatomical fiber tract portrayal. Zentralbl Neurochir. 2009;70:27–35.

    Article  Google Scholar 

  56. FitzGerald DB, Cosgrove GR, Ronner S, Jiang H, Buchbinder BR, Belliveau JW, et al. Location of language in the cortex: a comparison between functional MR imaging and electrocortical stimulation. AJNR Am J Neuroradiol. 1997;18:1529–39.

    PubMed  CAS  Google Scholar 

  57. Hertz-Pannier L, Gaillard WD, Mott SH, Cuenod CA, Bookheimer SY, Weinstein S, et al. Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study. Neurology. 1997;48(4):1003–12.

    PubMed  CAS  Google Scholar 

  58. Yetkin FZ, Mueller WM, Morris GL, McAuliffe TL, Ulmer JL, Cox RW, et al. Functional MR activation correlated with intraoperative cortical mapping. AJNR Am J Neuroradiol. 1997;18(7):1311–5.

    PubMed  CAS  Google Scholar 

  59. Benson RR, FitzGerald DB, LeSueur LL, Kennedy DN, Kwong KK, Buchbinder BR, et al. Articles – language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology. 1999;52:798–809.

    PubMed  CAS  Google Scholar 

  60. Brannen JH, Badie B, Moritz CH, Quigley M, Meyerand ME, Haughton VM. Reliability of functional MR imaging with word-generation tasks for mapping Broca’s area. AJNR Am J Neuroradiol. 2001;22:1711–8.

    PubMed  CAS  Google Scholar 

  61. Bizzi A, Blasi V, Falini A, Ferroli P, Cadioli M, Danesi U, et al. Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology. 2008;248:579–89.

    Article  PubMed  Google Scholar 

  62. Yetkin FZ, Mueller WM, Morris GL, et al. Functional MR activation correlated with intraoperative cortical mapping. AJNR Am J Neuroradiol. 1997;18:1311–5.

    PubMed  CAS  Google Scholar 

  63. Roux FE, Boulanouar K, Ranjeva JP, et al. Cortical intraoperative stimulation in brain tumors as a tool to evaluate spatial data from motor functional MRI. Invest Radiol. 1999;34:225–9.

    Article  PubMed  CAS  Google Scholar 

  64. Roux FE, Boulanouar K, Ranjeva JP, et al. Usefulness of motor functional MRI correlated to cortical mapping in Rolandic low-grade astrocytomas. Acta Neurochir (Wien). 1999;141:71–9.

    Article  CAS  Google Scholar 

  65. Hirsch J, Ruge MI, Kim KH, et al. Anintegrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions. Neurosurgery. 2000;47:711–21. discussion 721–22.

    PubMed  CAS  Google Scholar 

  66. Roux FE, Ibarrola D, Tremoulet M, et al. Methodological and technical issues for integrating functional magnetic resonance imaging data in a neuronavigational system. Neurosurgery. 2001;9:1145–56. discussion 1156–57.

    Google Scholar 

  67. Krings T, Schreckenberger M, Rohde V, et al. Functional MRI and 18F FDG-positron emission tomography for presurgical planning: comparison with electrical cortical stimulation. Acta Neurochir (Wien). 2002;144:889–99.

    Article  CAS  Google Scholar 

  68. Wu JS, Zhou LF, Chen W, et al. Prospective comparison of functional magnetic resonance imaging and intraoperative motor evoked potential monitoring for cortical mapping of primary motor areas [in Chinese]. Zhonghua Wai Ke Za Zhi. 2005;43:1141–5.

    PubMed  Google Scholar 

  69. Xie J, Chen XZ, Jiang T, et al. Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with gliomas involving the motor cortical areas. Chin Med J (Engl). 2008;121:631–5.

    Google Scholar 

  70. Binder JR, Swanson SJ, Hammeke TA, Morris GL, Mueller WM, Fischer M, et al. Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology. 1996;46:978–84.

    PubMed  CAS  Google Scholar 

  71. Bahn MM, Lin W, Silbergeld DL, Miller JW, Kuppusamy K, Cook RJ, et al. Localization of language cortices by functional MR imaging compared with intracarotid amobarbital hemispheric sedation. AJR Am J Roentgenol. 1997;169(2):575–9.

    PubMed  CAS  Google Scholar 

  72. Hund-Georgiadis M, Lex U, Friederici AD, von Cramon DY. Non-invasive regime for language lateralization in right- and left-handers by means of functional MRI and dichotic listening. Exp Brain Res. 2002;145:166–76.

    Article  PubMed  Google Scholar 

  73. Rutten GJ, Ramsey NF, van Rijen PC, Alpherts WC, van Veelen CW. fMRI-determined language lateralization in patients with unilateral or mixed language dominance according to the Wada test. Neuroimage. 2002;17:447–60.

    Article  PubMed  CAS  Google Scholar 

  74. Sabbah P, Chassoux F, Leveque C, Landre E, Baudoin-Chial S, Devaux B, et al. Functional MR imaging in assessment of language dominance in epileptic patients. Neuroimage. 2003;18:460–7.

    Article  PubMed  CAS  Google Scholar 

  75. Fernandes MA, Smith ML, Logan W, Crawley A, McAndrews MP. Comparing language lateralization determined by dichotic listening and fMRI activation in frontal and temporal lobes in children with epilepsy. Brain Lang. 2006;96:106–14.

    Article  PubMed  CAS  Google Scholar 

  76. Arora J, Pugh K, Westerveld M, Spencer S, Spencer DD, Constable RT. Language lateralization in epilepsy patients: fMRI validated with the Wada procedure. Epilepsia. 2009;50:2225–41.

    Article  PubMed  Google Scholar 

  77. Medina LS, Bernal B, Dunoyer C, et al. Seizure disorders: functional MR imaging for diagnostic evaluation and surgical treatment – prospective study. Radiology. 2005;236:247–53.

    Article  PubMed  Google Scholar 

  78. Roessler K, Donat M, Lanzenberger R, Novak K, Geissler A, Gartus A, et al. Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome. J Neurol Neurosurg Psychiatry. 2005;76(8):1152–7.

    Article  PubMed  CAS  Google Scholar 

  79. Bello L, Gambini A, Castellano A, et al. Motor and language DTI fiber tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage. 2008;39:369–82.

    Article  PubMed  Google Scholar 

  80. Wu JS, Zhou LF, Tang WJ, et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery. 2007;61:935–48. discussion 948–49.

    Article  PubMed  Google Scholar 

  81. Ulmer JL, et al. The role of diffusion tensor imaging inestablishing the proximity of tumor borders to functional brain systems: implications for preoperative risk assessments and postoperative outcomes. Technol Cancer Res Treat. 2004;3(6):567–76.

    Article  PubMed  Google Scholar 

  82. Bello L, et al. Intraoperative use of diffusion tensor imaging fiber tractography and subcortical mapping for resection of gliomas: technical considerations. Neurosurg Focus. 2010;28(2):E6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay J. Pillai MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pillai, J.J., Zaca, D. (2011). DTI and fMRI: Review of Complementary Techniques. In: Faro, S., Mohamed, F., Law, M., Ulmer, J. (eds) Functional Neuroradiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0345-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0345-7_39

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0343-3

  • Online ISBN: 978-1-4419-0345-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics