Applications of fMRI to Neurodegenerative Disease

  • Shamseldeen Y. Mahmoud
  • Stephen E. Jones
  • Michael D. Phillips


The age distribution in developed countries is shifting, with more seniors living to age 80 and 90 years, and beyond. This shift has created a challenge for medical professionals caring for geriatric patients, as an aging population means an increased prevalence of age-related neurodegenerative brain diseases with signs and symptoms such as memory impairment, frank dementia, and motor deterioration.


Amyotrophic Lateral Sclerosis Mild Cognitive Impairment Functional Connectivity Motor Imagery Supplementary Motor Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002;298(5594):789–91.PubMedCrossRefGoogle Scholar
  2. 2.
    Coleman P, Federoff Kurlan R. A focus on the synapse for neuroprotection in Alzheimer disease and other dementias. Neurology. 2004;63(7):1155–62.PubMedGoogle Scholar
  3. 3.
    DeKosky ST, Marek K. Looking backward to move forward: early detection of neurodegenerative disorders. Science. 2003;302(5646):830–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Brickman AM, Small SA, Fleisher A. Pinpointing synaptic loss caused by Alzheimer’s disease with fMRI. Behav Neurol. 2009;21(1):93–100.PubMedGoogle Scholar
  5. 5.
    Essig M. Degenerative brain disease. In: Diseases of the brain, head & neck, spine. Milan: Springer; 2008.Google Scholar
  6. 6.
    Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci. 2006;29:449–76.PubMedCrossRefGoogle Scholar
  7. 7.
    Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.PubMedCrossRefGoogle Scholar
  8. 8.
    Pihlajamäki M, Tanila H, Hänninen T, et al. Encoding of novel picture pairs activates the perirhinal cortex: an fMRI study. Hippocampus. 2003;13(1):67–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Sperling RA, Bates JF, Cocchiarella AJ, Schacter DL, Rosen BR, Albert MS. Encoding novel face-name associations: a functional MRI study. Hum Brain Mapp. 2001;14(3):129–39.PubMedCrossRefGoogle Scholar
  10. 10.
    Eichenbaum H. A cortical-hippocampal system for declarative memory. Nat Rev Neurosci. 2000;1(1):41–50.PubMedCrossRefGoogle Scholar
  11. 11.
    Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957;20(1):11–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Pariente J, Cole S, Henson R, et al. Alzheimer’s patients engage an alternative network during a memory task. Ann Neurol. 2005;58(6):870–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Sperling RA, Bates JF, Chua EF, et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74(1):44–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Yan JH, Dick MB. Practice effects on motor control in healthy seniors and patients with mild cognitive impairment and Alzheimer’s disease. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2006;13(3–4):385–410.PubMedGoogle Scholar
  15. 15.
    Dickerson BC, Sperling RA. Neuroimaging biomarkers for clinical trials of disease-modifying therapies in Alzheimer’s disease. NeuroRx. 2005;2(2):348–60.PubMedCrossRefGoogle Scholar
  16. 16.
    Dickerson BC, Miller SL, Greve DN, et al. Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability: an event-related functional-anatomic MRI study. Hippocampus. 2007;17(11):1060–70.PubMedCrossRefGoogle Scholar
  17. 17.
    Amieva H, Le Goff M, Millet X, et al. Prodromal Alzheimer’s disease: successive emergence of the clinical symptoms. Ann Neurol. 2008;64(5):492–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Petersen RC, Parisi JE, Dickson DW, et al. Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol. 2006;63(5):665–72.PubMedCrossRefGoogle Scholar
  19. 19.
    Morris JC, Cummings J. Mild cognitive impairment (MCI) represents early-stage Alzheimer’s disease. J Alzheimers Dis. 2005;7(3):235–9. discussion 255–62.PubMedGoogle Scholar
  20. 20.
    Morris JC, Storandt M, Miller JP, et al. Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol. 2001;58(3):397–405.PubMedCrossRefGoogle Scholar
  21. 21.
    Bennett DA, Wilson RS, Schneider JA, et al. Natural history of mild cognitive impairment in older persons. Neurology. 2002;59(2):198–205.PubMedGoogle Scholar
  22. 22.
    Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Bowen J, Teri L, Kukull W, McCormick W, McCurry SM, Larson EB. Progression to dementia in patients with isolated memory loss. Lancet. 1997;349(9054):763–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Lyketsos CG, Lopez O, Jones B, Fitzpatrick AL, Breitner J, DeKosky S. Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: results from the cardiovascular health study. JAMA. 2002;288(12):1475–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Vogel A, Stokholm J, Gade A, Andersen BB, Hejl AM, Waldemar G. Awareness of deficits in mild cognitive impairment and Alzheimer’s disease: do MCI patients have impaired insight? Dement Geriatr Cogn Disord. 2004;17(3):181–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6(8):734–46.PubMedCrossRefGoogle Scholar
  27. 27.
    National Institute on Aging. Alzheimer’s disease fact sheet. Bethesda, MD: US National Institute of Health National Institute on Aging; 2008.Google Scholar
  28. 28.
    Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.PubMedCrossRefGoogle Scholar
  29. 29.
    Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science. 1984;225(4667):1168–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Scheff SW, Price DA, Schmitt FA, Mufson EJ. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging. 2006;27(10):1372–84.PubMedCrossRefGoogle Scholar
  31. 31.
    Jagust WJ, Zheng L, Harvey DJ, et al. Neuropathological basis of magnetic resonance images in aging and dementia. Ann Neurol. 2008;63(1):72–80.PubMedCrossRefGoogle Scholar
  32. 32.
    Rombouts SA, Barkhof F, Veltman DJ, et al. Functional MR imaging in Alzheimer’s disease during memory encoding. AJNR Am J Neuroradiol. 2000;21(10):1869–75.PubMedGoogle Scholar
  33. 33.
    Small SA, Perera GM, DeLaPaz R, Mayeux R, Stern Y. Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer’s disease. Ann Neurol. 1999;45(4):466–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Kato T, Knopman D, Liu H. Dissociation of regional activation in mild AD during visual encoding: a functional MRI study. Neurology. 2001;57(5):812–6.PubMedGoogle Scholar
  35. 35.
    Machulda MM, Ward HA, Borowski B, et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer’s patients. Neurology. 2003;61(4):500–6.PubMedGoogle Scholar
  36. 36.
    Gron G, Riepe MW. Neural basis for the cognitive continuum in episodic memory from health to Alzheimer disease. Am J Geriatr Psychiatry. 2004;12(6):648–52.PubMedGoogle Scholar
  37. 37.
    Dickerson BC, Salat DH, Greve DN, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology. 2005;65(3):404–11.PubMedCrossRefGoogle Scholar
  38. 38.
    Golby A, Silverberg G, Race E, et al. Memory encoding in Alzheimer’s disease: an fMRI study of explicit and implicit memory. Brain. 2005;128(Pt 4):773–87.PubMedCrossRefGoogle Scholar
  39. 39.
    Rémy F, Mirrashed F, Campbell B, Richter W. Verbal episodic memory impairment in Alzheimer’s disease: a combined structural and functional MRI study. Neuroimage. 2005;25(1):253–66.PubMedCrossRefGoogle Scholar
  40. 40.
    Celone KA, Calhoun VD, Dickerson BC, et al. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J Neurosci. 2006;26(40):10222–31.PubMedCrossRefGoogle Scholar
  41. 41.
    Hämäläinen A, Pihlajamäki M, Tanila H, et al. Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol Aging. 2007;28(12):1889–903.PubMedCrossRefGoogle Scholar
  42. 42.
    Gould RL, Arroyo B, Brown RG, Owen AM, Bullmore ET, Howard RJ. Brain mechanisms of successful compensation during learning in Alzheimer disease. Neurology. 2006;67(6):1011–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Gould RL, Brown RG, Owen AM, Bullmore ET, Williams SC, Howard RJ. Functional neuroanatomy of successful paired associate learning in Alzheimer’s disease. Am J Psychiatry. 2005;162(11):2049–60.PubMedCrossRefGoogle Scholar
  44. 44.
    Sperling RA, Dickerson BC, Pihlajamaki M, et al. Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Med. 2010;12(1):27–43.PubMedCrossRefGoogle Scholar
  45. 45.
    Petersen RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58(12):1985–92.PubMedCrossRefGoogle Scholar
  46. 46.
    Petersen RC. Mild cognitive impairment: current research and clinical implications. Semin Neurol. 2007;27(1):22–31.PubMedCrossRefGoogle Scholar
  47. 47.
    Dickerson BC, Salat DH, Bates JF, et al. Medial temporal lobe function and structure in mild cognitive impairment. Ann Neurol. 2004;56(1):27–35.PubMedCrossRefGoogle Scholar
  48. 48.
    Kircher TT, Weis S, Freymann K, et al. Hippocampal activation in patients with mild cognitive impairment is necessary for successful memory encoding. J Neurol Neurosurg Psychiatry. 2007;78(8):812–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Johnson SC, Schmitz TW, Moritz CH, et al. Activation of brain regions vulnerable to Alzheimer’s disease: the effect of mild cognitive impairment. Neurobiol Aging. 2006;27(11):1604–12.PubMedCrossRefGoogle Scholar
  50. 50.
    Petrella JR, Krishnan S, Slavin MJ, Tran TT, Murty L, Doraiswamy PM. Mild cognitive impairment: evaluation with 4-T functional MR imaging. Radiology. 2006;240(1):177–86.PubMedCrossRefGoogle Scholar
  51. 51.
    Lenzi D, Serra L, Perri R, et al. Single domain amnestic MCI: A multiple cognitive domains fMRI investigation. Neurobiol Aging. 2009. Article in Press, Corrected Proof.Google Scholar
  52. 52.
    Heun R, Freymann K, Erb M, et al. Mild cognitive impairment (MCI) and actual retrieval performance affect cerebral activation in the elderly. Neurobiol Aging. 2007;28(3):404–13.PubMedCrossRefGoogle Scholar
  53. 53.
    Dickerson BC, Sperling RA. Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: insights from functional MRI studies. Neuropsychologia. 2008;46(6):1624–35.PubMedCrossRefGoogle Scholar
  54. 54.
    Johnson SC, Schmitz TW, Trivedi MA, et al. The influence of Alzheimer disease family history and apolipoprotein E epsilon4 on mesial temporal lobe activation. J Neurosci. 2006;26(22):6069–76.PubMedCrossRefGoogle Scholar
  55. 55.
    Mandzia JL, McAndrews MP, Grady CL, Graham SJ, Black SE. Neural correlates of incidental memory in mild cognitive impairment: an fMRI study. Neurobiol Aging. 2009;30(5):717–30.PubMedCrossRefGoogle Scholar
  56. 56.
    Johnson SC, Baxter LC, Susskind-Wilder L, Connor DJ, Sabbagh MN, Caselli RJ. Hippocampal adaptation to face repetition in healthy elderly and mild cognitive impairment. Neuropsychologia. 2004;42(7):980–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Ries ML, Schmitz TW, Kawahara TN, Torgerson BM, Trivedi MA, Johnson SC. Task-dependent posterior cingulate activation in mild cognitive impairment. Neuroimage. 2006;29(2):485–92.PubMedCrossRefGoogle Scholar
  58. 58.
    Ries ML, Jabbar BM, Schmitz TW, et al. Anosognosia in mild cognitive impairment: relationship to activation of cortical midline structures involved in self-appraisal. J Int Neuropsychol Soc. 2007;13(3):450–61.PubMedCrossRefGoogle Scholar
  59. 59.
    DeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol. 2002;51(2):145–55.PubMedCrossRefGoogle Scholar
  60. 60.
    Hashimoto M, Masliah E. Cycles of aberrant synaptic sprouting and neurodegeneration in Alzheimer’s and dementia with Lewy bodies. Neurochem Res. 2003;28(11):1743–56.PubMedCrossRefGoogle Scholar
  61. 61.
    Stern EA, Bacskai BJ, Hickey GA, Attenello FJ, Lombardo JA, Hyman BT. Cortical synaptic integration in vivo is disrupted by amyloid-beta plaques. J Neurosci. 2004;24(19):4535–40.PubMedCrossRefGoogle Scholar
  62. 62.
    Davis TL, Kwong KK, Weisskoff RM, Rosen BR. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A. 1998;95(4):1834–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Cohen ER, Ugurbil K, Kim SG. Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. J Cereb Blood Flow Metab. 2002;22(9):1042–53.PubMedCrossRefGoogle Scholar
  64. 64.
    Rand-Giovannetti E, Chua EF, Driscoll AE, Schacter DL, Albert MS, Sperling RA. Hippocampal and neocortical activation during repetitive encoding in older persons. Neurobiol Aging. 2006;27(1):173–82.PubMedCrossRefGoogle Scholar
  65. 65.
    Miller SL, Celone K, DePeau K, et al. Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proc Natl Acad Sci U S A. 2008;105(6):2181–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Sperling R, Chua E, Cocchiarella A, et al. Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage. 2003;20(2):1400–10.PubMedCrossRefGoogle Scholar
  67. 67.
    Grön G, Bittner D, Schmitz B, Wunderlich AP, Riepe MW. Subjective memory complaints: objective neural markers in patients with Alzheimer’s disease and major depressive disorder. Ann Neurol. 2002;51(4):491–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Rémy F, Mirrashed F, Campbell B, Richter W. Mental calculation impairment in Alzheimer’s disease: a functional magnetic resonance imaging study. Neurosci Lett. 2004;358(1):25–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Rombouts SA, Goekoop R, Stam CJ, Barkhof F, Scheltens P. Delayed rather than decreased BOLD response as a marker for early Alzheimer’s disease. Neuroimage. 2005;26(4):1078–85.PubMedCrossRefGoogle Scholar
  70. 70.
    Pihlajamäki M, DePeau KM, Blacker D, Sperling RA. Impaired medial temporal repetition suppression is related to failure of parietal deactivation in Alzheimer disease. Am J Geriatr Psychiatry. 2008;16(4):283–92.PubMedCrossRefGoogle Scholar
  71. 71.
    Grady CL, McIntosh AR, Beig S, Keightley ML, Burian H, Black SE. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. J Neurosci. 2003;23(3):986–93.PubMedGoogle Scholar
  72. 72.
    Pihlajamäki M, O’ Keefe K, Bertram L, et al. Evidence of altered posteromedial cortical fMRI activity in subjects at risk for Alzheimer disease. Alzheimer Dis Assoc Disord. 2010;24(1):28–36.PubMedCrossRefGoogle Scholar
  73. 73.
    Mesulam MM. From sensation to cognition. Brain. 1998;121(Pt 6):1013–52.PubMedCrossRefGoogle Scholar
  74. 74.
    Buckner RL. Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron. 2004;44(1):195–208.PubMedCrossRefGoogle Scholar
  75. 75.
    Schwindt GC, Black SE. Functional imaging studies of episodic memory in Alzheimer’s disease: a quantitative meta-analysis. Neuroimage. 2009;45(1):181–90.PubMedCrossRefGoogle Scholar
  76. 76.
    Peters F, Collette F, Degueldre C, Sterpenich V, Majerus S, Salmon E. The neural correlates of verbal short-term memory in Alzheimer’s disease: an fMRI study. Brain. 2009;132(Pt 7):1833–46.PubMedCrossRefGoogle Scholar
  77. 77.
    Saykin AJ, Flashman LA, Frutiger SA, et al. Neuroanatomic substrates of semantic memory impairment in Alzheimer’s disease: patterns of functional MRI activation. J Int Neuropsychol Soc. 1999;5(5):377–92.PubMedCrossRefGoogle Scholar
  78. 78.
    Grossman M, Koenig P, Glosser G, et al. Neural basis for semantic memory difficulty in Alzheimer’s disease: an fMRI study. Brain. 2003;126(Pt 2):292–311.PubMedCrossRefGoogle Scholar
  79. 79.
    Vandenbulcke M, Peeters R, Dupont P, Van Hecke P, Vandenberghe R. Word reading and posterior temporal dysfunction in amnestic mild cognitive impairment. Cereb Cortex. 2007;17(3):542–51.PubMedCrossRefGoogle Scholar
  80. 80.
    Miller KM, Finney GR, Meador KJ, Loring DW. Auditory responsive naming versus visual confrontation naming in dementia. Clin Neuropsychol. 2010;24(1):103–18.PubMedCrossRefGoogle Scholar
  81. 81.
    Dannhauser TM, Walker Z, Stevens T, Lee L, Seal M, Shergill SS. The functional anatomy of divided attention in amnestic mild cognitive impairment. Brain. 2005;128(Pt 6):1418–27.PubMedCrossRefGoogle Scholar
  82. 82.
    Bokde AL, Lopez-Bayo P, Meindl T, et al. Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment. Brain. 2006;129(Pt 5):1113–24.PubMedCrossRefGoogle Scholar
  83. 83.
    Teipel SJ, Bokde AL, Born C, et al. Morphological substrate of face matching in healthy ageing and mild cognitive impairment: a combined MRI-fMRI study. Brain. 2007;130(Pt 7):1745–58.PubMedCrossRefGoogle Scholar
  84. 84.
    Thiyagesh SN, Farrow TF, Parks RW, et al. The neural basis of visuospatial perception in Alzheimer’s disease and healthy elderly comparison subjects: an fMRI study. Psychiatry Res. 2009;172(2):109–16.PubMedCrossRefGoogle Scholar
  85. 85.
    Tripoliti EE, Fotiadis DI, Argyropoulou M, Manis G. A six stage approach for the diagnosis of the Alzheimer’s disease based on fMRI data. J Biomed Inform. 2010;43(2):307–20.PubMedCrossRefGoogle Scholar
  86. 86.
    Morcom AM, Fletcher PC. Does the brain have a baseline? Why we should be resisting a rest. Neuroimage. 2007;37(4):1073–82.CrossRefGoogle Scholar
  87. 87.
    Fleisher AS, Sherzai A, Taylor C, Langbaum JB, Chen K, Buxton RB. Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer’s disease risk groups. Neuroimage. 2009;47(4):1678–90.PubMedCrossRefGoogle Scholar
  88. 88.
    Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P. Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp. 2005;26(4):231–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Petrella JR, Prince SE, Wang L, Hellegers C, Doraiswamy PM. Prognostic value of posteromedial cortex deactivation in mild cognitive impairment. PLoS One. 2007;2(10):e1104.PubMedCrossRefGoogle Scholar
  90. 90.
    Sorg C, Riedl V, Mühlau M, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci U S A. 2007;104(47):18760–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Lustig C, Buckner RL. Preserved neural correlates of priming in old age and dementia. Neuron. 2004;42(5):865–75.PubMedCrossRefGoogle Scholar
  92. 92.
    Daselaar SM, Fleck MS, Dobbins IG, Madden DJ, Cabeza R. Effects of healthy aging on hippocampal and rhinal memory functions: an event-related fMRI study. Cereb Cortex. 2006;16(12):1771–82.PubMedCrossRefGoogle Scholar
  93. 93.
    Meltzer CC, Zubieta JK, Brandt J, Tune LE, Mayberg HS, Frost JJ. Regional hypometabolism in Alzheimer’s disease as measured by positron emission tomography after correction for effects of partial volume averaging. Neurology. 1996;47(2):454–61.PubMedGoogle Scholar
  94. 94.
    Silverman DH, Small GW, Chang CY, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA. 2001;286(17):2120–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Alexander GE, Chen K, Pietrini P, Rapoport SI, Reiman EM. Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies. Am J Psychiatry. 2002;159(5):738–45.PubMedCrossRefGoogle Scholar
  96. 96.
    Small GW, Ercoli LM, Silverman DH, et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A. 2000;97(11):6037–42.PubMedCrossRefGoogle Scholar
  97. 97.
    Reiman EM, Chen K, Alexander GE, et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc Natl Acad Sci U S A. 2004;101(1):284–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Jagust W, Gitcho A, Sun F, Kuczynski B, Mungas D, Haan M. Brain imaging evidence of preclinical Alzheimer’s disease in normal aging. Ann Neurol. 2006;59(4):673–81.PubMedCrossRefGoogle Scholar
  99. 99.
    Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19.PubMedCrossRefGoogle Scholar
  100. 100.
    Qi Z, Wu X, Wang Z, et al. Impairment and compensation coexist in amnestic MCI default mode network. Neuroimage. 2010;50(1):48–55.PubMedCrossRefGoogle Scholar
  101. 101.
    Lustig C, Snyder AZ, Bhakta M, et al. Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci U S A. 2003;100(24):14504–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A. 2004;101(13):4637–42.PubMedCrossRefGoogle Scholar
  103. 103.
    Wang L, Zang Y, He Y, et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage. 2006;31(2):496–504.PubMedCrossRefGoogle Scholar
  104. 104.
    Wang K, Liang M, Wang L, et al. Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Hum Brain Mapp. 2007;28(10):967–78.PubMedCrossRefGoogle Scholar
  105. 105.
    He Y, Wang L, Zang Y, et al. Regional coherence changes in the early stages of Alzheimer’s disease: a combined structural and resting-state functional MRI study. Neuroimage. 2007;35(2):488–500.PubMedCrossRefGoogle Scholar
  106. 106.
    Petrella JR, Wang L, Krishnan S, et al. Cortical deactivation in mild cognitive impairment: high-field-strength functional MR imaging. Radiology. 2007;245(1):224–35.PubMedCrossRefGoogle Scholar
  107. 107.
    Buckner RL, Snyder AZ, Shannon BJ, et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci. 2005;25(34):7709–17.PubMedCrossRefGoogle Scholar
  108. 108.
    Mintun MA, Larossa GN, Sheline YI, et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology. 2006;67(3):446–52.PubMedCrossRefGoogle Scholar
  109. 109.
    Forsberg A, Engler H, Almkvist O, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging. 2008;29(10):1456–65.PubMedCrossRefGoogle Scholar
  110. 110.
    Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol. 1997;42(1):85–94.PubMedCrossRefGoogle Scholar
  111. 111.
    Nestor PJ, Fryer TD, Smielewski P, Hodges JR. Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann Neurol. 2003;54(3):343–51.PubMedCrossRefGoogle Scholar
  112. 112.
    Gould RL, Brown RG, Owen AM, Bullmore ET, Howard RJ. Task-induced deactivations during successful paired associates learning: an effect of age but not Alzheimer’s disease. Neuroimage. 2006;31(2):818–31.PubMedCrossRefGoogle Scholar
  113. 113.
    Grady CL, Springer MV, Hongwanishkul D, McIntosh AR, Winocur G. Age-related changes in brain activity across the adult lifespan. J Cogn Neurosci. 2006;18(2):227–41.PubMedCrossRefGoogle Scholar
  114. 114.
    Daselaar SM, Prince SE, Cabeza R. When less means more: deactivations during encoding that predict subsequent memory. Neuroimage. 2004;23(3):921–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet. 2007;39(1):17–23.PubMedCrossRefGoogle Scholar
  116. 116.
    Saunders AM, Strittmatter WJ, Schmechel D, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology. 1993;43(8):1467–72.PubMedGoogle Scholar
  117. 117.
    Small GW, Mazziotta JC, Collins MT, et al. Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA. 1995;273(12):942–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Reiman EM, Caselli RJ, Yun LS, et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med. 1996;334(12):752–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Suthana NA, Krupa A, Donix M, et al. Reduced hippocampal CA2, CA3, and dentate gyrus activity in asymptomatic people at genetic risk for Alzheimer’s disease. Neuroimage. 2010;53(3):1077–84.PubMedCrossRefGoogle Scholar
  120. 120.
    Dennis NA, Browndyke JN, Stokes J, et al. Temporal lobe functional activity and connectivity in young adult APOE varepsilon4 carriers. Alzheimers Dement. 2010;6:303–11.Google Scholar
  121. 121.
    Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med. 2000;343(7):450–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Burggren AC, Small GW, Sabb FW, Bookheimer SY. Specificity of brain activation patterns in people at genetic risk for Alzheimer disease. Am J Geriatr Psychiatry. 2002;10(1):44–51.PubMedGoogle Scholar
  123. 123.
    Smith CD, Andersen AH, Kryscio RJ, et al. Women at risk for AD show increased parietal activation during a fluency task. Neurology. 2002;58(8):1197–202.PubMedGoogle Scholar
  124. 124.
    Bondi MW, Houston WS, Eyler LT, Brown GG. fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology. 2005;64(3):501–8.PubMedCrossRefGoogle Scholar
  125. 125.
    Fleisher AS, Houston WS, Eyler LT, et al. Identification of Alzheimer disease risk by functional magnetic resonance imaging. Arch Neurol. 2005;62(12):1881–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Wishart HA, Saykin AJ, Rabin LA, et al. Increased brain activation during working memory in cognitively intact adults with the APOE epsilon4 allele. Am J Psychiatry. 2006;163(9):1603–10.PubMedCrossRefGoogle Scholar
  127. 127.
    Han SD, Houston WS, Jak AJ, et al. Verbal paired-associate learning by APOE genotype in non-demented older adults: fMRI evidence of a right hemispheric compensatory response. Neurobiol Aging. 2007;28(2):238–47.PubMedCrossRefGoogle Scholar
  128. 128.
    Smith CD, Andersen AH, Kryscio RJ, et al. Altered brain activation in cognitively intact individuals at high risk for Alzheimer’s disease. Neurology. 1999;53(7):1391–6.PubMedGoogle Scholar
  129. 129.
    Lind J, Persson J, Ingvar M, et al. Reduced functional brain activity response in cognitively intact apolipoprotein E epsilon4 carriers. Brain. 2006;129(Pt 5):1240–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Trivedi MA, Schmitz TW, Ries ML, et al. Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer’s disease: a cross-sectional study. BMC Med. 2006;4:1.PubMedCrossRefGoogle Scholar
  131. 131.
    Borghesani PR, Johnson LC, Shelton AL, et al. Altered medial temporal lobe responses during visuospatial encoding in healthy APOE*4 carriers. Neurobiol Aging. 2008;29(7):981–91.PubMedCrossRefGoogle Scholar
  132. 132.
    Bassett SS, Yousem DM, Cristinzio C, et al. Familial risk for Alzheimer’s disease alters fMRI activation patterns. Brain. 2006;129(Pt 5):1229–39.PubMedCrossRefGoogle Scholar
  133. 133.
    Fleisher AS, Podraza KM, Bangen KJ, et al. Cerebral perfusion and oxygenation differences in Alzheimer’s disease risk. Neurobiol Aging. 2009;30(11):1737–48.PubMedCrossRefGoogle Scholar
  134. 134.
    Sperling R, Greve D, Dale A, et al. Functional MRI detection of pharmacologically induced memory impairment. Proc Natl Acad Sci U S A. 2002;99(1):455–60.PubMedCrossRefGoogle Scholar
  135. 135.
    Bentley P, Driver J, Dolan RJ. Cholinesterase inhibition modulates visual and attentional brain responses in Alzheimer’s disease and health. Brain. 2008;131(Pt 2):409–24.PubMedCrossRefGoogle Scholar
  136. 136.
    Kaduszkiewicz H, Zimmermann T, Beck-Bornholdt HP, van den Bussche H. Cholinesterase inhibitors for patients with Alzheimer’s disease: systematic review of randomised clinical trials. BMJ. 2005;331(7512):321–7.PubMedCrossRefGoogle Scholar
  137. 137.
    McShane R, Areosa Sastre A, Minakaran N. Memantine for dementia. Cochrane Database Syst Rev 2006;(2):CD003154.Google Scholar
  138. 138.
    Saykin AJ, Wishart HA, Rabin LA, et al. Cholinergic enhancement of frontal lobe activity in mild cognitive impairment. Brain. 2004;127(Pt 7):1574–83.PubMedCrossRefGoogle Scholar
  139. 139.
    Kircher TT, Erb M, Grodd W, Leube DT. Cortical activation during cholinesterase-inhibitor treatment in Alzheimer disease: preliminary findings from a pharmaco-fMRI study. Am J Geriatr Psychiatry. 2005;13(11):1006–13.PubMedGoogle Scholar
  140. 140.
    Goekoop R, Rombouts SA, Jonker C, et al. Challenging the cholinergic system in mild cognitive impairment: a pharmacological fMRI study. Neuroimage. 2004;23(4):1450–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Goekoop R, Scheltens P, Barkhof F, Rombouts SA. Cholinergic challenge in Alzheimer patients and mild cognitive impairment differentially affects hippocampal activation – a pharmacological fMRI study. Brain. 2006;129(Pt 1):141–57.PubMedGoogle Scholar
  142. 142.
    Grön G, Brandenburg I, Wunderlich AP, Riepe MW. Inhibition of hippocampal function in mild cognitive impairment: targeting the cholinergic hypothesis. Neurobiol Aging. 2006;27(1):78–87.PubMedCrossRefGoogle Scholar
  143. 143.
    Shanks MF, McGeown WJ, Forbes-McKay KE, Waiter GD, Ries M, Venneri A. Regional brain activity after prolonged cholinergic enhancement in early Alzheimer’s disease. Magn Reson Imaging. 2007;25(6):848–59.PubMedCrossRefGoogle Scholar
  144. 144.
    Rombouts SA, Barkhof F, Van Meel CS, Scheltens P. Alterations in brain activation during cholinergic enhancement with rivastigmine in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2002;73(6):665–71.PubMedCrossRefGoogle Scholar
  145. 145.
    Pihlajamäki M, Sperling RA. fMRI: use in early Alzheimer’s disease and in clinical trials. Future Neurol. 2008;3(4):409–21.CrossRefGoogle Scholar
  146. 146.
    Machielsen WC, Rombouts SA, Barkhof F, Scheltens P, Witter MP. FMRI of visual encoding: reproducibility of activation. Hum Brain Mapp. 2000;9(3):156–64.PubMedCrossRefGoogle Scholar
  147. 147.
    Diamond EL, Miller S, Dickerson BC, et al. Relationship of fMRI activation to clinical trial memory measures in Alzheimer disease. Neurology. 2007;69(13):1331–41.PubMedCrossRefGoogle Scholar
  148. 148.
    Johnson SC, Saykin AJ, Flashman LA, McAllister TW, Sparling MB. Brain activation on fMRI and verbal memory ability: functional neuroanatomic correlates of CVLT performance. J Int Neuropsychol Soc. 2001;7(1):55–62.PubMedCrossRefGoogle Scholar
  149. 149.
    Mondadori CR, Buchmann A, Mustovic H, et al. Enhanced brain activity may precede the diagnosis of Alzheimer’s disease by 30 years. Brain. 2006;129(Pt 11):2908–22.PubMedCrossRefGoogle Scholar
  150. 150.
    Braskie MN, Small GW, Bookheimer SY. Entorhinal cortex structure and functional MRI response during an associative verbal memory task. Hum Brain Mapp. 2009;30(12):3981–92.PubMedCrossRefGoogle Scholar
  151. 151.
    Hodges JR, Davies RR, Xuereb JH, et al. Clinicopathological correlates in frontotemporal dementia. Ann Neurol. 2004;56(3):399–406.PubMedCrossRefGoogle Scholar
  152. 152.
    McKhann GM, Albert MS, Grossman M, et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol. 2001;58(11):1803–9.PubMedCrossRefGoogle Scholar
  153. 153.
    Mott RT, Dickson DW, Trojanowski JQ, et al. Neuropathologic, biochemical, and molecular characterization of the frontotemporal dementias. J Neuropathol Exp Neurol. 2005;64(5):420–8.PubMedGoogle Scholar
  154. 154.
    Kertesz A, Munoz DG. Frontotemporal dementia. Med Clin North Am. 2002;86(3):501–18. vi.PubMedCrossRefGoogle Scholar
  155. 155.
    Forman MS, Farmer J, Johnson JK, et al. Frontotemporal dementia: clinicopathological correlations. Ann Neurol. 2006;59(6):952–62.PubMedCrossRefGoogle Scholar
  156. 156.
    Josephs KA, Petersen RC, Knopman DS, et al. Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology. 2006;66(1):41–8.PubMedCrossRefGoogle Scholar
  157. 157.
    Mendez MF, Lauterbach EC, Sampson SM. An evidence-based review of the psychopathology of frontotemporal dementia: a report of the ANPA Committee on Research. J Neuropsychiatry Clin Neurosci. 2008;20(2):130–49.PubMedCrossRefGoogle Scholar
  158. 158.
    Johnson JK, Diehl J, Mendez MF, et al. Frontotemporal lobar degeneration: demographic characteristics of 353 patients. Arch Neurol. 2005;62(6):925–30.PubMedCrossRefGoogle Scholar
  159. 159.
    Mendez MF, Selwood A, Mastri AR, Frey 2nd WH. Pick’s disease versus Alzheimer’s disease: a comparison of clinical characteristics. Neurology. 1993;43(2):289–92.PubMedGoogle Scholar
  160. 160.
    Pasquier F, Delacourte A. Non-Alzheimer degenerative dementias. Curr Opin Neurol. 1998;11(5):417–27.PubMedCrossRefGoogle Scholar
  161. 161.
    The Lund and Manchester Groups. Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiatry. 1994;57(4):416–8.CrossRefGoogle Scholar
  162. 162.
    Ratnavalli E, Brayne C, Dawson K, Hodges JR. The prevalence of frontotemporal dementia. Neurology. 2002;58(11):1615–21.PubMedGoogle Scholar
  163. 163.
    Robert PH, Lafont V, Snowden JS, Lebert F. Diagnostic criteria for fronto-temporal lobe degeneration. Encephale. 1999;25(6):612–21.PubMedGoogle Scholar
  164. 164.
    Mychack P, Kramer JH, Boone KB, Miller BL. The influence of right frontotemporal dysfunction on social behavior in frontotemporal dementia. Neurology. 2001;56(11 Suppl 4):S11–5.PubMedGoogle Scholar
  165. 165.
    Edwards-Lee T, Miller BL, Benson DF, et al. The temporal variant of frontotemporal dementia. Brain. 1997;120(Pt 6):1027–40.PubMedCrossRefGoogle Scholar
  166. 166.
    Liu W, Miller BL, Kramer JH, et al. Behavioral disorders in the frontal and temporal variants of frontotemporal dementia. Neurology. 2004;62(5):742–8.PubMedGoogle Scholar
  167. 167.
    Miller BL, Cummings J, Mishkin F, et al. Emergence of artistic talent in frontotemporal dementia. Neurology. 1998;51(4):978–82.PubMedGoogle Scholar
  168. 168.
    Rankin KP, Kramer JH, Mychack P, Miller BL. Double dissociation of social functioning in frontotemporal dementia. Neurology. 2003;60(2):266–71.PubMedGoogle Scholar
  169. 169.
    Rosen HJ, Hartikainen KM, Jagust W, et al. Utility of clinical criteria in differentiating frontotemporal lobar degeneration (FTLD) from AD. Neurology. 2002;58(11):1608–15.PubMedGoogle Scholar
  170. 170.
    Berthoz S, Armony JL, Blair RJ, Dolan RJ. An fMRI study of intentional and unintentional (embarrassing) violations of social norms. Brain. 2002;125(Pt 8):1696–708.PubMedCrossRefGoogle Scholar
  171. 171.
    Rombouts SA, van Swieten JC, Pijnenburg YA, Goekoop R, Barkhof F, Scheltens P. Loss of frontal fMRI activation in early frontotemporal dementia compared to early AD. Neurology. 2003;60(12):1904–8.PubMedGoogle Scholar
  172. 172.
    Werner KH, Roberts NA, Rosen HJ, et al. Emotional reactivity and emotion recognition in frontotemporal lobar degeneration. Neurology. 2007;69(2):148–55.PubMedCrossRefGoogle Scholar
  173. 173.
    Whitehouse PJ, Sciulli CG, Mason RM. Dementia drug development: use of information systems to harmonize global drug development. Psychopharmacol Bull. 1997;33(1):129–33.PubMedGoogle Scholar
  174. 174.
    Braskie MN, Small GW, Bookheimer SY. Vascular health risks and fMRI activation during a memory task in older adults. Neurobiol Aging. 2010;31(9):1532–42. Epub 2008 Oct 1.PubMedCrossRefGoogle Scholar
  175. 175.
    Haley AP, Sweet LH, Gunstad J, et al. Verbal working memory and atherosclerosis in patients with cardiovascular disease: an fMRI study. J Neuroimaging. 2007;17(3):227–33.PubMedCrossRefGoogle Scholar
  176. 176.
    Snijders AH, van de Warrenburg BP, Giladi N, Bloem BR. Neurological gait disorders in elderly people: clinical approach and classification. Lancet Neurol. 2007;6(1):63–74.PubMedCrossRefGoogle Scholar
  177. 177.
    Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH. Symptomatic occult hydrocephalus with “normal” cerebrospinal-fluid pressure. A treatable syndrome. N Engl J Med. 1965;273:117–26.PubMedCrossRefGoogle Scholar
  178. 178.
    Tullberg M, Hultin L, Ekholm S, Månsson JE, Fredman P, Wikkelsø C. White matter changes in normal pressure hydrocephalus and Binswanger disease: specificity, predictive value and correlations to axonal degeneration and demyelination. Acta Neurol Scand. 2002;105(6):417–26.PubMedCrossRefGoogle Scholar
  179. 179.
    Malm J, Eklund A. Idiopathic normal pressure hydrocephalus. Pract Neurol. 2006;6(1):14–27.CrossRefGoogle Scholar
  180. 180.
    Malm J, Kristensen B, Stegmayr B, Fagerlund M, Koskinen LO. Three-year survival and functional outcome of patients with idiopathic adult hydrocephalus syndrome. Neurology. 2000;55(4):576–8.PubMedGoogle Scholar
  181. 181.
    Lenfeldt N, Larsson A, Nyberg L, et al. Idiopathic normal pressure hydrocephalus: increased supplementary motor activity accounts for improvement after CSF drainage. Brain. 2008;131(Pt 11):2904–12.PubMedCrossRefGoogle Scholar
  182. 182.
    McNaught KS, Olanow CW. Protein aggregation in the pathogenesis of familial and sporadic Parkinson’s disease. Neurobiol Aging. 2006;27(4):530–45.PubMedCrossRefGoogle Scholar
  183. 183.
    Miyasaki JM, Shannon K, Voon V, et al. Practice Parameter: evaluation and treatment of depression, psychosis, and dementia in Parkinson disease (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;66(7):996–1002.PubMedCrossRefGoogle Scholar
  184. 184.
    Rao SS, Hofmann LA, Shakil A. Parkinson’s disease: diagnosis and treatment. Am Fam Physician. 2006;74(12):2046–54.PubMedGoogle Scholar
  185. 185.
    Leibson CL, Long KH, Maraganore DM, et al. Direct medical costs associated with Parkinson’s disease: a population-based study. Mov Disord. 2006;21(11):1864–71.PubMedCrossRefGoogle Scholar
  186. 186.
    Chaudhuri KR, Healy DG, Schapira AH. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol. 2006;5(3):235–45.PubMedCrossRefGoogle Scholar
  187. 187.
    Poewe W. The natural history of Parkinson’s disease. J Neurol. 2006;253 Suppl 7:VII2–6.PubMedCrossRefGoogle Scholar
  188. 188.
    Dowding CH, Shenton CL, Salek SS. A review of the health-related quality of life and economic impact of Parkinson’s disease. Drugs Aging. 2006;23(9):693–721.PubMedCrossRefGoogle Scholar
  189. 189.
    Huse DM, Schulman K, Orsini L, Castelli-Haley J, Kennedy S, Lenhart G. Burden of illness in Parkinson’s disease. Mov Disord. 2005;20(11):1449–54.PubMedCrossRefGoogle Scholar
  190. 190.
    Weintraub D, Comella CL, Horn S. Parkinson’s disease – Part 1: pathophysiology, symptoms, burden, diagnosis, and assessment. Am J Manag Care. 2008;14(2 Suppl):S40–8.PubMedGoogle Scholar
  191. 191.
    Pallone JA. Introduction to Parkinson’s disease. Dis Mon. 2007;53(4):195–9.PubMedCrossRefGoogle Scholar
  192. 192.
    Jenner P, Olanow CW. The pathogenesis of cell death in Parkinson’s disease. Neurology. 2006;66(10 Suppl 4):S24–36.PubMedGoogle Scholar
  193. 193.
    Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.PubMedCrossRefGoogle Scholar
  194. 194.
    Haber SN, Fudge JL, McFarland NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci. 2000;20(6):2369–82.PubMedGoogle Scholar
  195. 195.
    Parent A. Extrinsic connections of the basal ganglia. Trends Neurosci. 1990;13(7):254–8.PubMedCrossRefGoogle Scholar
  196. 196.
    Dagher A, Nagano-Saito A. Functional and anatomical magnetic resonance imaging in Parkinson’s disease. Mol Imaging Biol. 2007;9(4):234–42.PubMedCrossRefGoogle Scholar
  197. 197.
    Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain. 1991;114(Pt 5):2283–301.PubMedCrossRefGoogle Scholar
  198. 198.
    Haslinger B, Erhard P, Kämpfe N, et al. Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain. 2001;124(Pt 3):558–70.PubMedCrossRefGoogle Scholar
  199. 199.
    Sabatini U, Boulanouar K, Fabre N, et al. Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain. 2000;123(Pt 2):394–403.PubMedCrossRefGoogle Scholar
  200. 200.
    Buhmann C, Glauche V, Stürenburg HJ, Oechsner M, Weiller C, Büchel C. Pharmacologically modulated fMRI – cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain. 2003;126(Pt 2):451–61.PubMedCrossRefGoogle Scholar
  201. 201.
    Rowe J, Stephan KE, Friston K, Frackowiak R, Lees A, Passingham R. Attention to action in Parkinson’s disease: impaired effective connectivity among frontal cortical regions. Brain. 2002;125(Pt 2):276–89.PubMedCrossRefGoogle Scholar
  202. 202.
    Dirnberger G, Frith CD, Jahanshahi M. Executive dysfunction in Parkinson’s disease is associated with altered pallidal-frontal processing. Neuroimage. 2005;25(2):588–99.PubMedCrossRefGoogle Scholar
  203. 203.
    Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31(2–3):236–50.PubMedCrossRefGoogle Scholar
  204. 204.
    van Nuenen BF, van Eimeren T, van der Vegt JP, et al. Mapping preclinical compensation in Parkinson’s disease: an imaging genomics approach. Mov Disord. 2009;24 Suppl 2:S703–10.PubMedCrossRefGoogle Scholar
  205. 205.
    Thobois S, Dominey P, Decety J, Pollak P, Gregoire MC, Broussolle E. Overactivation of primary motor cortex is asymmetrical in hemiparkinsonian patients. Neuroreport. 2000;11(4):785–9.PubMedCrossRefGoogle Scholar
  206. 206.
    Palmer SJ, Ng B, Abugharbieh R, Eigenraam L, McKeown MJ. Motor reserve and novel area recruitment: amplitude and spatial characteristics of compensation in Parkinson’s disease. Eur J Neurosci. 2009;29(11):2187–96.PubMedCrossRefGoogle Scholar
  207. 207.
    Peters S, Suchan B, Rusin J, et al. Apomorphine reduces BOLD signal in fMRI during voluntary movement in Parkinsonian patients. Neuroreport. 2003;14(6):809–12.PubMedCrossRefGoogle Scholar
  208. 208.
    Wu T, Chan P, Hallett M. Effective connectivity of neural networks in automatic movements in Parkinson’s disease. Neuroimage. 2010;49(3):2581–7. Epub 2009 Oct 22.PubMedCrossRefGoogle Scholar
  209. 209.
    Wu T, Wang L, Chen Y, Zhao C, Li K, Chan P. Changes of functional connectivity of the motor network in the resting state in Parkinson’s disease. Neurosci Lett. 2009;460(1):6–10.PubMedCrossRefGoogle Scholar
  210. 210.
    Palmer SJ, Eigenraam L, Hoque T, McCaig RG, Troiano A, McKeown MJ. Levodopa-sensitive, dynamic changes in effective connectivity during simultaneous movements in Parkinson’s disease. Neuroscience. 2009;158(2):693–704.PubMedCrossRefGoogle Scholar
  211. 211.
    Kraft E, Loichinger W, Diepers M, et al. Levodopa-induced striatal activation in Parkinson’s disease: a functional MRI study. Parkinsonism Relat Disord. 2009;15(8):558–63.PubMedCrossRefGoogle Scholar
  212. 212.
    Hesselmann V, Sorger B, Girnus R, et al. Intraoperative functional MRI as a new approach to monitor deep brain stimulation in Parkinson’s disease. Eur Radiol. 2004;14(4):686–90.PubMedCrossRefGoogle Scholar
  213. 213.
    Phillips MD, Baker KB, Lowe MJ, et al. Parkinson disease: pattern of functional MR imaging activation during deep brain stimulation of subthalamic nucleus – initial experience. Radiology. 2006;239(1):209–16.PubMedCrossRefGoogle Scholar
  214. 214.
    Stefurak T, Mikulis D, Mayberg H, et al. Deep brain stimulation for Parkinson’s disease dissociates mood and motor circuits: a functional MRI case study. Mov Disord. 2003;18(12):1508–16.PubMedCrossRefGoogle Scholar
  215. 215.
    Schrag A, Jahanshahi M, Quinn N. What contributes to quality of life in patients with Parkinson’s disease? J Neurol Neurosurg Psychiatry. 2000;69(3):308–12.PubMedCrossRefGoogle Scholar
  216. 216.
    Weintraub D, Moberg PJ, Duda JE, Katz IR, Stern MB. Effect of psychiatric and other nonmotor symptoms on disability in Parkinson’s disease. J Am Geriatr Soc. 2004;52(5):784–8.PubMedCrossRefGoogle Scholar
  217. 217.
    Owen AM, James M, Leigh PN, et al. Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain. 1992;115(Pt 6):1727–51.PubMedCrossRefGoogle Scholar
  218. 218.
    Aarsland D, Andersen K, Larsen JP, Lolk A, Nielsen H, Kragh-Sørensen P. Risk of dementia in Parkinson’s disease: a community-based, prospective study. Neurology. 2001;56(6):730–6.PubMedGoogle Scholar
  219. 219.
    Monchi O, Petrides M, Petre V, Worsley K, Dagher A. Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosci. 2001;21(19):7733–41.PubMedGoogle Scholar
  220. 220.
    Dagher A, Owen AM, Boecker H, Brooks DJ. Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain. 1999;122(Pt 10):1973–87.PubMedCrossRefGoogle Scholar
  221. 221.
    Lewis SJ, Dove A, Robbins TW, Barker RA, Owen AM. Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci. 2003;23(15):6351–6.PubMedGoogle Scholar
  222. 222.
    Mattay VS, Tessitore A, Callicott JH, et al. Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Ann Neurol. 2002;51(2):156–64.PubMedCrossRefGoogle Scholar
  223. 223.
    Sawaguchi T, Matsumura M, Kubota K. Catecholaminergic effects on neuronal activity related to a delayed response task in monkey prefrontal cortex. J Neurophysiol. 1990;63(6):1385–400.PubMedGoogle Scholar
  224. 224.
    Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol. 1996;50(4):381–425.PubMedCrossRefGoogle Scholar
  225. 225.
    Jubault T, Monetta L, Strafella AP, Lafontaine AL, Monchi O. L-dopa medication in Parkinson’s disease restores activity in the motor cortico-striatal loop but does not modify the cognitive network. PLoS One. 2009;4(7):e6154.PubMedCrossRefGoogle Scholar
  226. 226.
    Cools R, Lewis SJ, Clark L, Barker RA, Robbins TW. L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson’s disease. Neuropsychopharmacology. 2007;32(1):180–9.PubMedCrossRefGoogle Scholar
  227. 227.
    Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med. 1988;318(14):876–80.PubMedCrossRefGoogle Scholar
  228. 228.
    Gotham AM, Brown RG, Marsden CD. ‘Frontal’ cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain. 1988;111(Pt 2):299–321.PubMedCrossRefGoogle Scholar
  229. 229.
    Monchi O, Petrides M, Doyon J, Postuma RB, Worsley K, Dagher A. Neural bases of set-shifting deficits in Parkinson’s disease. J Neurosci. 2004;24(3):702–10.PubMedCrossRefGoogle Scholar
  230. 230.
    Monchi O, Petrides M, Mejia-Constain B, Strafella AP. Cortical activity in Parkinson’s disease during executive processing depends on striatal involvement. Brain. 2007;130(Pt 1):233–44.PubMedGoogle Scholar
  231. 231.
    Grossman M, Cooke A, DeVita C, et al. Grammatical and resource components of sentence processing in Parkinson’s disease: an fMRI study. Neurology. 2003;60(5):775–81.PubMedGoogle Scholar
  232. 232.
    Barnes J, David AS. Visual hallucinations in Parkinson’s disease: a review and phenomenological survey. J Neurol Neurosurg Psychiatry. 2001;70(6):727–33.PubMedCrossRefGoogle Scholar
  233. 233.
    Meppelink AM, de Jong BM, Renken R, Leenders KL, Cornelissen FW, van Laar T. Impaired visual processing preceding image recognition in Parkinson’s disease patients with visual hallucinations. Brain. 2008;132(Pt 11):2980–93.PubMedCrossRefGoogle Scholar
  234. 234.
    Ramírez-Ruiz B, Martí MJ, Tolosa E, et al. Brain response to complex visual stimuli in Parkinson’s patients with hallucinations: a functional magnetic resonance imaging study. Mov Disord. 2009;23(16):2335–43.PubMedCrossRefGoogle Scholar
  235. 235.
    Welge-Lüssen A, Wattendorf E, Schwerdtfeger U, et al. Olfactory-induced brain activity in Parkinson’s disease relates to the expression of event-related potentials: a functional magnetic resonance imaging study. Neuroscience. 2009;162(2):537–43.PubMedCrossRefGoogle Scholar
  236. 236.
    Westermann B, Wattendorf E, Schwerdtfeger U, et al. Functional imaging of the cerebral olfactory system in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2008;79(1):19–24.PubMedCrossRefGoogle Scholar
  237. 237.
    Sen S, Kawaguchi A, Truong Y, Lewis MM, Huang X. Dynamic changes in cerebello-thalamo-cortical motor circuitry during progression of Parkinson’s disease. Neuroscience. 2010;166(2):712–9. Epub 2009 Dec 24.PubMedCrossRefGoogle Scholar
  238. 238.
    Péran P, Cardebat D, Cherubini A, et al. Object naming and action-verb generation in Parkinson’s disease: a fMRI study. Cortex. 2009;45(8):960–71.PubMedCrossRefGoogle Scholar
  239. 239.
    Cardoso EF, Maia FM, Fregni F, et al. Depression in Parkinson’s disease: convergence from voxel-based morphometry and functional magnetic resonance imaging in the limbic thalamus. Neuroimage. 2009;47(2):467–72.PubMedCrossRefGoogle Scholar
  240. 240.
    Williams-Gray CH, Hampshire A, Barker RA, Owen AM. Attentional control in Parkinson’s disease is dependent on COMT val 158 met genotype. Brain. 2008;131(Pt 2):397–408.PubMedCrossRefGoogle Scholar
  241. 241.
    Tinaz S, Schendan HE, Stern CE. Fronto-striatal deficit in Parkinson’s disease during semantic event sequencing. Neurobiol Aging. 2008;29(3):397–407.PubMedCrossRefGoogle Scholar
  242. 242.
    Rowe JB, Hughes L, Ghosh BC, et al. Parkinson’s disease and dopaminergic therapy – differential effects on movement, reward and cognition. Brain. 2008;131(Pt 8):2094–105.PubMedCrossRefGoogle Scholar
  243. 243.
    Gusella JF, McNeil S, Persichetti F, et al. Huntington’s disease. Cold Spring Harb Symp Quant Biol. 1996;61:615–26.PubMedGoogle Scholar
  244. 244.
    The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72(6):971–83.CrossRefGoogle Scholar
  245. 245.
    Duyao M, Ambrose C, Myers R, et al. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet. 1993;4(4):387–92.PubMedCrossRefGoogle Scholar
  246. 246.
    Gutekunst CA, Li SH, Yi H, et al. Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci. 1999;19(7):2522–34.PubMedGoogle Scholar
  247. 247.
    Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol. 1998;57(5):369–84.PubMedCrossRefGoogle Scholar
  248. 248.
    Myers RH, Sax DS, Koroshetz WJ, et al. Factors associated with slow progression in Huntington’s disease. Arch Neurol. 1991;48(8):800–4.PubMedGoogle Scholar
  249. 249.
    Rosas HD, Salat DH, Lee SY, et al. Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain. 2008;131(Pt 4):1057–68.PubMedCrossRefGoogle Scholar
  250. 250.
    Sax DS, O’Donnell B, Butters N, Menzer L, Montgomery K, Kayne HL. Computed tomographic, neurologic, and ­neuropsychological correlates of Huntington’s disease. Int J Neurosci. 1983;18(1–2):21–36.PubMedCrossRefGoogle Scholar
  251. 251.
    Starkstein SE, Brandt J, Folstein S, et al. Neuropsychological and neuroradiological correlates in Huntington’s disease. J Neurol Neurosurg Psychiatry. 1988;51(10):1259–63.PubMedCrossRefGoogle Scholar
  252. 252.
    Starkstein SE, Brandt J, Bylsma F, Peyser C, Folstein M, Folstein SE. Neuropsychological correlates of brain atrophy in Huntington’s disease: a magnetic resonance imaging study. Neuroradiology. 1992;34(6):487–9.PubMedCrossRefGoogle Scholar
  253. 253.
    Aylward EH, Li Q, Stine OC, Ranen N, et al. Longitudinal change in basal ganglia volume in patients with Huntington’s disease. Neurology. 1997;48(2):394–9.PubMedGoogle Scholar
  254. 254.
    Rosas HD, Goodman J, Chen YI, et al. Striatal volume loss in HD as measured by MRI and the influence of CAG repeat. Neurology. 2001;57(6):1025–8.PubMedGoogle Scholar
  255. 255.
    Aylward EH, Codori AM, Barta PE, Pearlson GD, Harris GJ, Brandt J. Basal ganglia volume and proximity to onset in presymptomatic Huntington disease. Arch Neurol. 1996;53(12):1293–6.PubMedGoogle Scholar
  256. 256.
    Paulsen JS, Langbehn DR, Stout JC, et al. Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry. 2008;79(8):874–80.PubMedCrossRefGoogle Scholar
  257. 257.
    Paulsen JS. Functional imaging in Huntington’s disease. Exp Neurol. 2009;216(2):272–7.PubMedCrossRefGoogle Scholar
  258. 258.
    Clark VP, Lai S, Deckel AW. Altered functional MRI responses in Huntington’s disease. Neuroreport. 2002;13(5):703–6.PubMedCrossRefGoogle Scholar
  259. 259.
    Dierks T, Linden DE, Hertel A, et al. Multimodal imaging of residual function and compensatory resource allocation in cortical atrophy: a case study of parietal lobe function in a patient with Huntington’s disease. Psychiatry Res. 1999;90(1):67–75.PubMedGoogle Scholar
  260. 260.
    Georgiou-Karistianis N, Sritharan A, Farrow M, et al. Increased cortical recruitment in Huntington’s disease using a Simon task. Neuropsychologia. 2007;45(8):1791–800.PubMedCrossRefGoogle Scholar
  261. 261.
    Thiruvady DR, Georgiou-Karistianis N, Egan GF, et al. Functional connectivity of the prefrontal cortex in Huntington’s disease. J Neurol Neurosurg Psychiatry. 2007;78(2):127–33.PubMedCrossRefGoogle Scholar
  262. 262.
    Kim JS, Reading SA, Brashers-Krug T, Calhoun VD, Ross CA, Pearlson GD. Functional MRI study of a serial reaction time task in Huntington’s disease. Psychiatry Res. 2004;131(1):23–30.PubMedCrossRefGoogle Scholar
  263. 263.
    Wolf RC, Sambataro F, Vasic N, Schönfeldt-Lecuona C, Ecker D, Landwehrmeyer B. Aberrant connectivity of lateral prefrontal networks in presymptomatic Huntington’s disease. Exp Neurol. 2008;213(1):137–44.PubMedCrossRefGoogle Scholar
  264. 264.
    Wolf RC, Vasic N, Schönfeldt-Lecuona C, Ecker D, Landwehrmeyer GB. Functional imaging of cognitive processes in Huntington’s disease and its presymptomatic mutation carriers. Nervenarzt. 2008;79(4):408–20.PubMedCrossRefGoogle Scholar
  265. 265.
    Paulsen JS, Zimbelman JL, Hinton SC, et al. fMRI biomarker of early neuronal dysfunction in presymptomatic Huntington’s disease. AJNR Am J Neuroradiol. 2004;25(10):1715–21.PubMedGoogle Scholar
  266. 266.
    Reading SA, Dziorny AC, Peroutka LA, et al. Functional brain changes in presymptomatic Huntington’s disease. Ann Neurol. 2004;55(6):879–83.PubMedCrossRefGoogle Scholar
  267. 267.
    Zimbelman JL, Paulsen JS, Mikos A, Reynolds NC, Hoffmann RG, Rao SM. fMRI detection of early neural dysfunction in preclinical Huntington’s disease. J Int Neuropsychol Soc. 2007;13(5):758–69.PubMedCrossRefGoogle Scholar
  268. 268.
    Wolf RC, Vasic N, Schönfeldt-Lecuona C, Landwehrmeyer GB, Ecker D. Dorsolateral prefrontal cortex dysfunction in presymptomatic Huntington’s disease: evidence from event-related fMRI. Brain. 2007;130(Pt 11):2845–57.PubMedCrossRefGoogle Scholar
  269. 269.
    Brooks BR, Bushara K, Khan A, et al. Functional magnetic resonance imaging (fMRI) clinical studies in ALS – paradigms, problems and promises. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1 Suppl 2:S23–32.PubMedCrossRefGoogle Scholar
  270. 270.
    Lule D, Ludolph AC, Kassubek J. MRI-based functional neuroimaging in ALS: an update. Amyotroph Lateral Scler. 2009;10(5–6):258–68.PubMedCrossRefGoogle Scholar
  271. 271.
    Konrad C, Henningsen H, Bremer J, et al. Pattern of cortical ­reorganization in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Exp Brain Res. 2002;143(1):51–6.PubMedCrossRefGoogle Scholar
  272. 272.
    Han J, Ma L. Functional magnetic resonance imaging study of the brain in patients with amyotrophic lateral sclerosis. Chin Med Sci J. 2006;21(4):228–33.PubMedGoogle Scholar
  273. 273.
    Stanton BR, Williams VC, Leigh PN, et al. Altered cortical activation during a motor task in ALS. Evidence for involvement of central pathways. J Neurol. 2007;254(9):1260–7.PubMedCrossRefGoogle Scholar
  274. 274.
    Schoenfeld MA, Tempelmann C, Gaul C, et al. Functional motor compensation in amyotrophic lateral sclerosis. J Neurol. 2005;252(8):944–52.PubMedCrossRefGoogle Scholar
  275. 275.
    Weiller C, May A, Sach M, Buhmann C, Rijntjes M. Role of functional imaging in neurological disorders. J Magn Reson Imaging. 2006;23(6):840–50.PubMedCrossRefGoogle Scholar
  276. 276.
    Kew JJ, Leigh PN, Playford ED, et al. Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. Brain. 1993;116(Pt 3):655–80.PubMedCrossRefGoogle Scholar
  277. 277.
    Kew JJ, Brooks DJ, Passingham RE, Rothwell JC, Frackowiak RS, Leigh PN. Cortical function in progressive lower motor neuron disorders and amyotrophic lateral sclerosis: a comparative PET study. Neurology. 1994;44(6):1101–10.PubMedGoogle Scholar
  278. 278.
    Lulé D, Diekmann V, Kassubek J, et al. Cortical plasticity in amyotrophic lateral sclerosis: motor imagery and function. Neurorehabil Neural Repair. 2007;21(6):518–26.PubMedCrossRefGoogle Scholar
  279. 279.
    Konrad C, Jansen A, Henningsen H, et al. Subcortical reorganization in amyotrophic lateral sclerosis. Exp Brain Res. 2006;172(3):361–9.PubMedCrossRefGoogle Scholar
  280. 280.
    Stanton BR, Williams VC, Leigh PN, et al. Cortical activation during motor imagery is reduced in Amyotrophic Lateral Sclerosis. Brain Res. 2007;1172:145–51.PubMedCrossRefGoogle Scholar
  281. 281.
    Tessitore A, Esposito F, Monsurrò MR, et al. Subcortical motor plasticity in patients with sporadic ALS: an fMRI study. Brain Res Bull. 2006;69(5):489–94.PubMedCrossRefGoogle Scholar
  282. 282.
    Isaacs JD, Dean AF, Shaw CE, Al-Chalabi A, Mills KR, Leigh PN. Amyotrophic lateral sclerosis with sensory neuropathy: part of a multisystem disorder? J Neurol Neurosurg Psychiatry. 2007;78(7):750–3.PubMedCrossRefGoogle Scholar
  283. 283.
    Mai R, Facchetti D, Micheli A, Poloni M. Quantitative electroencephalography in amyotrophic lateral sclerosis. Electroencephalogr Clin Neurophysiol. 1998;106(4):383–6.PubMedCrossRefGoogle Scholar
  284. 284.
    Pugdahl K, Fuglsang-Frederiksen A, de Carvalho M, et al. Generalised sensory system abnormalities in amyotrophic lateral sclerosis: a European multicentre study. J Neurol Neurosurg Psychiatry. 2007;78(7):746–9.PubMedCrossRefGoogle Scholar
  285. 285.
    Pekkonen E, Osipova D, Laaksovirta H. Magnetoencephalographic evidence of abnormal auditory processing in amyotrophic lateral sclerosis with bulbar signs. Clin Neurophysiol. 2004;115(2):309–15.PubMedCrossRefGoogle Scholar
  286. 286.
    Münte TF, Tröger MC, Nusser I, et al. Alteration of early components of the visual evoked potential in amyotrophic lateral sclerosis. J Neurol. 1998;245(4):206–10.PubMedCrossRefGoogle Scholar
  287. 287.
    Vieregge P, Wauschkuhn B, Heberlein I, Hagenah J, Verleger R. Selective attention is impaired in amyotrophic lateral sclerosis–a study of event-related EEG potentials. Brain Res Cogn Brain Res. 1999;8(1):27–35.PubMedCrossRefGoogle Scholar
  288. 288.
    Pinkhardt EH, Jürgens R, Becker W, et al. Signs of impaired selective attention in patients with amyotrophic lateral sclerosis. J Neurol. 2008;255(4):532–8.PubMedCrossRefGoogle Scholar
  289. 289.
    Ludolph AC, Langen KJ, Regard M, et al. Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychologic and positron emission tomography study. Acta Neurol Scand. 1992;85(2):81–9.PubMedCrossRefGoogle Scholar
  290. 290.
    Kew JJ, Goldstein LH, Leigh PN, et al. The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis. A neuropsychological and positron emission tomography study. Brain. 1993;116(Pt 6):1399–423.PubMedCrossRefGoogle Scholar
  291. 291.
    Abrahams S, Goldstein LH, Kew JJ, et al. Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain. 1996;119(Pt 6):2105–20.PubMedCrossRefGoogle Scholar
  292. 292.
    Abrahams S, Goldstein LH, Al-Chalabi A, et al. Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 1997;62(5):464–72.PubMedCrossRefGoogle Scholar
  293. 293.
    Strong MJ, Grace GM, Orange JB, Leeper HA, Menon RS, Aere C. A prospective study of cognitive impairment in ALS. Neurology. 1999;53(8):1665–70.PubMedGoogle Scholar
  294. 294.
    Lomen-Hoerth C, Anderson T, Miller B. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology. 2002;59(7):1077–9.PubMedGoogle Scholar
  295. 295.
    Schreiber H, Gaigalat T, Wiedemuth-Catrinescu U, et al. Cognitive function in bulbar- and spinal-onset amyotrophic lateral sclerosis. A longitudinal study in 52 patients. J Neurol. 2005;252(7):772–81.PubMedCrossRefGoogle Scholar
  296. 296.
    Piquard A, Le Forestier N, Baudoin-Madec V, et al. Neuropsychological changes in patients with primary lateral sclerosis. Amyotroph Lateral Scler. 2006;7(3):150–60.PubMedCrossRefGoogle Scholar
  297. 297.
    Anzai E, Shiozawa Z, Shindo K, Tsunoda S, Koizumi K, Uchiyama G. 123I-iodoamphetamine single photon emission computed tomography in three patients with amyotrophic lateral sclerosis. Kaku Igaku. 1990;27(8):863–7.PubMedGoogle Scholar
  298. 298.
    Tanaka M, Kondo S, Hirai S, Sun X, Yamagishi T, Okamoto K. Cerebral blood flow and oxygen metabolism in progressive dementia associated with amyotrophic lateral sclerosis. J Neurol Sci. 1993;120(1):22–8.PubMedCrossRefGoogle Scholar
  299. 299.
    Abrahams S, Goldstein LH, Simmons A, et al. Word retrieval in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Brain. 2004;127(Pt 7):1507–17.PubMedCrossRefGoogle Scholar
  300. 300.
    Lulé D, Diekmann V, Anders S, et al. Brain responses to emotional stimuli in patients with amyotrophic lateral sclerosis (ALS). J Neurol. 2007;254(4):519–27.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shamseldeen Y. Mahmoud
    • 1
    • 2
  • Stephen E. Jones
    • 3
  • Michael D. Phillips
    • 4
  1. 1.Department of RadiologyCleveland ClinicClevelandUSA
  2. 2.Assiut UniversityAsyutEgypt
  3. 3.Department of NeuroradiologyCleveland ClinicClevelandUSA
  4. 4.Research and Academic Affairs, Imaging Institute, Department of RadiologyCleveland ClinicClevelandUSA

Personalised recommendations