Skip to main content

Brain Mapping for Neurosurgery and Cognitive Neuroscience

  • Chapter
  • First Online:
Functional Neuroradiology
  • 3676 Accesses

Abstract

One of the primary goals of neural science is to understand the biological underpinnings of cognition. This goal is based on the assumption that cognitive events emerge from brain events and that behavior can be explained in terms of neural processes. Francis Crick referred to this as “the Astonishing Hypothesis” [1]. According to this view, the biological principles that underlie cognition link the structure and function of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crick F. The astonishing hypothesis: the scientific search for the soul. New York: Charles Scribner’s Sons; 1994.

    Google Scholar 

  2. Dorland’s Illustrated Medical Dictionary. 27th ed. Philadelphia, PA: W.B. Saunders Co. (Harcourt Brace Jovanovich Inc.); 1988.

    Google Scholar 

  3. The American Heritage Dictionary of the English Language. 4th ed. Boston, MA: Houghton Mifflin Co.; 2000.

    Google Scholar 

  4. Neisser U. Cognitive psychology. New York: Appleton; 1967.

    Google Scholar 

  5. Damasio H, Grabowski T, Frank R, Galaburda AM, Damasio AR. The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science. 1994;264:1102–5.

    Article  PubMed  CAS  Google Scholar 

  6. Penfield W. The mystery of the mind. Princeton, NJ: Princeton University Press; 1975.

    Google Scholar 

  7. Roy, CS, Sherrington, CS. On the regulation of the blood supply of the brain. J. Physiol. 1890;11(1):85–158.

    PubMed  Google Scholar 

  8. Raichle ME, Martin WRW, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H215O. II. Implementation and validation. J Nucl Med. 1983;24:790–8.

    PubMed  CAS  Google Scholar 

  9. Fox PT, Raichle ME. Stimulus rate dependence of regional cerebral blood flow in human striate cortex demonstrated by positron emission tomography. J Neurophysiol. 1984;51:1109–20.

    PubMed  CAS  Google Scholar 

  10. Peterson SE, Fox PT, Posner MI, Mintun M, Raichle ME. Postiron emission tomographic studies of the processing of single words. J Cogn Neurosci. 1989;1(2):153–70.

    Article  Google Scholar 

  11. Ogawa S, Lee T-M, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990;14:68–78.

    Article  PubMed  CAS  Google Scholar 

  12. Gore JC. Principles and practice of functional MRI of the human brain. J Clin Invest. 2003;112:4–9.

    PubMed  CAS  Google Scholar 

  13. George JS, Aine CJ, Mosher JC, Schmidt MD, et al. Mapping function in the human brain with magneto encephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging. J Clin Neurophysiol. 1995;12:406–29.

    Article  PubMed  CAS  Google Scholar 

  14. Nimsky C, Ganslandt O, Kober H, Moller M, Ulmer S, Tomandl B, et al. Integration of functional magnetic resonance imaging supported by agnetoencephalography in functional neuronavigation. Neurosurgery. 1999;44(6):1249–55.

    PubMed  Google Scholar 

  15. Stapleton SR, Kiriakopoulos E, Mikulis D, Drake LM, Hoffman HJ, Humphreys R, et al. Combined utility of functional MRI, cortical mapping, and frameless stereotaxy in the resection of lesions in eloquent areas of brain in children. Pediatr Neurosurg. 1997;26:68–82.

    Article  PubMed  CAS  Google Scholar 

  16. Atlas SW, Howard RS, Maldjian J, Alsop D, Detre JA, Listerud J, et al. Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery. 1996;38(2):329–38.

    Article  PubMed  CAS  Google Scholar 

  17. Latchaw RE, Xiaoping HU, Ugurbil K, Hall WA, Madison MT, Heros RC. Functional magnetic resonance imaging as a management tool for cerebral arteriovenous malformations. Neurosurgery. 1995;37(4):619–25.

    Article  PubMed  CAS  Google Scholar 

  18. Lee CC, Jack Jr CR, Riederer SJ. Mapping of the central sulcus with functional MR: active versus passive activation tasks. Neuroradiology. 1998;19:847–52.

    CAS  Google Scholar 

  19. Mueller WM, Yetkin FZ, Hammeke TA, Morris III GL, Swanson SJ, Reichert K, et al. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery. 1996;39(3):515–21.

    PubMed  CAS  Google Scholar 

  20. Puce A, Constable T, Luby ML, Eng M, McCarthy G, Nobre AC, et al. Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg. 1995;83:262–70.

    Article  PubMed  CAS  Google Scholar 

  21. Schulder M, Maldijian JA, Liu WC, Holodny AI, Kalnin AT, Mun IK, et al. Functional image-guided surgery of intracranial tumors located in or near the sensorimotor cortex. Neurosurgery. 1998;89:412–8.

    Article  CAS  Google Scholar 

  22. Yousry TA, Schmid UD, Jassoy AG, Schmidt D, Eisener WE, Reulen HJ, et al. Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery. Radiology. 1995;195:23–9.

    PubMed  CAS  Google Scholar 

  23. Hart J, Rao SM, Nuwer M. Clinical functional magnetic resonance imaging. Cogn Behav Neurol. 2007;20(3):141–4.

    Article  PubMed  Google Scholar 

  24. Faro SH, Mukherji SK, Dolinskas CA, et al. ACR guidelines and standards committee ACR–ASNR practice guideline for the performance of functional magnetic resonance imaging of the brain (fMRI). 2007 (Resolution 3). http://www.acr.org/guidelines

  25. Debus J, Essig M, Schad LR, Wenz F, Baudendistel K, Knopp MV, et al. Functional magnetic imaging in a stereotactic setup. Magn Reson Imaging. 1996;14(9):1007–12.

    Article  PubMed  CAS  Google Scholar 

  26. Fried I, Nenov VI, Ojemann SG, Woods RP. Functional MR and PET imaging of rolandic and visual cortices for neurosurgical planning. J Neurosurg. 1995;83:854–61.

    Article  PubMed  CAS  Google Scholar 

  27. Chapman PH, Buchbinder BR, Cosgrove GR, Jiang HJ. Functional magnetic resonance imaging for cortical mapping in pediatric neurosurgery. Pediatr Neurosurg. 1995;23:122–6.

    Article  PubMed  CAS  Google Scholar 

  28. Fandino J, Kollias S, Wieser G, Valavanis A, Yonekawa Y. Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patters in patients with brain tumors involving the primary motor cortex. J Neurosurg. 1999;91:238–50.

    Article  PubMed  CAS  Google Scholar 

  29. Pujol J, Conesa G, Deus J, Lopez-Obarrio L, Isamat F, Capdevila A. Clinical application of functional magnetic resonance imaging in presurgical identification of the central sulcus. J Neurosurg. 1998;88:863–9.

    Article  PubMed  CAS  Google Scholar 

  30. Herholz K, Reulen H, von Stockhausen H, Thiel A, Ilmberger J, Kessler J, et al. Preoperative activation and intraoperative stimulation of language-related areas in patients with glioma. Neurosurgery. 1997;41(6):1253–62.

    Article  PubMed  CAS  Google Scholar 

  31. Hinke RM, Hu X, Stillman AE, Kim SG, Merkle H, Salmi R, et al. Functional magnetic resonance imaging of Broca’s area during internal speech. Neuroreport. 1993;4:675–8.

    Article  PubMed  CAS  Google Scholar 

  32. Binder JR, Frost JA, Hammeke TA, Bellgowan PSF, Rao SM, Cox RW. Conceptual processing during the conscious resting state: a functional MRI study. J Cogn Neurosci. 1999;11(1):80–93.

    Article  PubMed  CAS  Google Scholar 

  33. Kollias SS, Landau K, Khan N, Golay X, Bernays R, Yonekawa Y, et al. Functional evaluation using magnetic resonance imaging of the visual cortex in patients with retrochiasmatic lesions. Neurosurgery. 1998;89:780–90.

    Article  CAS  Google Scholar 

  34. Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, et al. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci. 1995;15:3215–30.

    PubMed  CAS  Google Scholar 

  35. Hirsch J, Rodriguez-Moreno D, Kim KHS. Interconnected large-scale systems for three fundamental cognitive tasks revealed by functional MRI. J Cogn Neurosci. 2001;13(3):1–16.

    Article  Google Scholar 

  36. Hirsch J, Ruge MI, Kim KHS, Correa DD, Victor JD, Relkin NR, et al. An integrated fMRI procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions. Neurosurgery. 2000;47(3):711–22.

    PubMed  CAS  Google Scholar 

  37. Kaplan EF, Goodglass H, Weintraub S. The Boston naming test. 2nd ed. Philadelphia, PA: Lea & Febiger; 1983.

    Google Scholar 

  38. Cedzich C, Taniguchi M, Schafer S, Schramm J. Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery. 1996;38:962–70.

    Article  PubMed  CAS  Google Scholar 

  39. Puce A. Comparative assessment of sensorimotor function using functional magnetic resonance imaging and electrophysiological methods. J Clin Neurophysiol. 1995;12:450–9.

    Article  PubMed  CAS  Google Scholar 

  40. Wada J, Rasmussen T. Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. J Neurosurg. 1960;17:266–82.

    Article  Google Scholar 

  41. Ruge MI, Victor JD, Hosain S, Correa DD, Relkin NR, Tabar V, et al. Concordance between functional magnetic resonance imaging and intraoperative language mapping. J Stereotact Funct Neurosurg. 1999;72:95–102.

    Article  CAS  Google Scholar 

  42. Kim KHS, Relkin NR, Lee K-M, Hirsch J. Distinct cortical areas associated with native and second languages. Nature. 1997;388:171–4.

    Article  PubMed  CAS  Google Scholar 

  43. Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere. J Neurosurg. 1989;71:316–26.

    Article  PubMed  CAS  Google Scholar 

  44. Hirsch J. Functional neuroimaging during altered states of consciousness: how and what do we measure? In the boundaries of consciousness: neurobiology and neuropathology (Steven Laureys, editor) progress in brain research, vol. 150. Amsterdam: Elsevier; 2005. p. 25–44.

    Google Scholar 

  45. Souweidane MM, Kim KHS, McDowall R, Ruge MI, Lis E, Krol G, et al. Brain mapping in sedated infants and young children with passive-functional magnetic resonance imaging. Pediatr Neurosurg. 1999;30:86–91.

    Article  PubMed  CAS  Google Scholar 

  46. Schiff ND, Rodriguez Moreno D, Kamal A, et al. fMRI reveals large-scale network activation in minimally conscious patients. Neurology. 2005;64:514–23.

    Article  PubMed  CAS  Google Scholar 

  47. Giacino JT, Ashwal S, Childs N, et al. The minimally conscious state: definition and diagnostic criteria. Neurology. 2002;58:349–53.

    PubMed  Google Scholar 

  48. Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD. Detecting awareness in the vegetative state. Science. 2006;313:1402.

    Article  PubMed  CAS  Google Scholar 

  49. Fins JJ. Constructing an ethical stereotaxy for severe brain injury: balancing risks, benefits and access. Nat Rev Neurosci. 2003;4:323–7.

    Article  PubMed  CAS  Google Scholar 

  50. Rodriguez Moreno D, Schiff ND, Giacino J, Kalmar K, Hirsch J. A network approach to assessing cognition in disorders of consciousness. Neurology. 2010;75(21):1871–8.

    Article  PubMed  CAS  Google Scholar 

  51. The Multi-Society Task Force on PVS. Medical aspects of the persistent vegetative state (1). N Engl J Med. 1994;330:1499–508.

    Article  Google Scholar 

  52. Haig AJ, Katz RT, Sahgal V. Mortality and complications of the locked-in syndrome. Arch Phys Med Rehabil. 1987;68:24–7.

    PubMed  CAS  Google Scholar 

  53. Childs NL, Mercer WN, Childs HW. Accuracy of diagnosis of persistent vegetative state. Neurology. 1993;43:1465–7.

    PubMed  CAS  Google Scholar 

  54. Andrews K, Murphy L, Munday R, Littlewood C. Misdiagnosis of the vegetative state: retrospective study in a rehabilitation unit. BMJ. 1996;313:13–6.

    PubMed  CAS  Google Scholar 

  55. Boly M, Coleman MR, Davis MH, Hampshire A, et al. When thoughts become actions: an fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. Neuroimage. 2007;36:979–92.

    Article  PubMed  CAS  Google Scholar 

  56. Monti MM, Vanhaudenhuyse A, Coleman MR, Boly M, et al. Willful modulation of brain activity in disorders of consciousness. N Engl J Med. Epub 3 Feb 2010.

    Google Scholar 

  57. Bekinschtein TA, Coleman MR, Niklison III J, Pickard JD, Manes FF. Can electromyography objectively detect voluntary movement in disorders of consciousness? J Neurol Neurosurg Psychiatry. 2008;79(7):826–8.

    Article  PubMed  CAS  Google Scholar 

  58. Schnakers C, Perrin F, Schabus M, et al. Voluntary brain processing in disorders of consciousness. Neurology. 2008;71(20):1614–20.

    Article  PubMed  CAS  Google Scholar 

  59. Monti MM, Coleman MR, Owen AM. Executive functions in the absence of behavior: functional imaging of the minimally conscious state. Prog Brain Res. 2009;177:249–60.

    Article  PubMed  Google Scholar 

  60. Giacino JT, Kalmar K, Whyte J. The JFK coma recovery scale revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil. 2004;85:2020–9.

    Article  PubMed  Google Scholar 

  61. Price CJ, Devlin JT, Moore CJ, Morton C, Laird AR. Meta-analyses of object naming: effect of baseline. Hum Brain Mapp. 2005;25:70–82.

    Article  PubMed  Google Scholar 

  62. Liljestrom M, Takianinen A, Parviainen T, et al. Perceiving and naming actions and objects. Neuroimage. 2008;41(3):1132–41.

    Article  PubMed  CAS  Google Scholar 

  63. Friederici AD, Ruschemeyer SA, Hahne A, Fiebach CJ. The role of left inferior frontal and superior temporal cortex in sentence comprehension: localizing syntactic and semantic processes. Cereb Cortex. 2003;13:170–7.

    Article  PubMed  Google Scholar 

  64. Grossberg S. How does the cerebral cortex work? Development, learning, attention, and 3-D vision by laminar circuits of visual cortex. Behav Cogn Neurosci Rev. 2003;2(1):47–76.

    Article  PubMed  Google Scholar 

  65. Greenham SL, Stelmack RM, Campbell KB. Effects of attention and semantic relation on event-related potentials in a picture-word naming task. Biol Psychol. 2000;50:79–104.

    Article  Google Scholar 

  66. Humphreys GW, Riddoch MJ, Price J. Top-down processes in object identification: evidence from experimental psychology, neuropsychology and functional neuroanatomy. Philos Trans R Soc Lond B. 1997;352:1275–82.

    Article  CAS  Google Scholar 

  67. Booth JR, Burman DD, Meyer JR, Gitelman DR, Parrish TB, Mesulam MM. Functional anatomy of intra- and cross-modal lexical tasks. Neuroimage. 2002;16:7–22.

    Article  PubMed  Google Scholar 

  68. Okada K, Hickik G. Left posterior auditory-related cortices participate both in speech perception and speech production: neural overlap revealed by fMRI. Brain Lang. 2006;98:112–7.

    Article  PubMed  Google Scholar 

  69. Indefrey P, Levelt WJ. The spatial and temporal signatures of word production components. Cognition. 2004;92:101–44.

    Article  PubMed  CAS  Google Scholar 

  70. Burton MW. Understanding the role of the prefrontal cortex in phonological processing. Clin Linguist Phon. 2009;23(3):180–95.

    Article  PubMed  Google Scholar 

  71. Damasio H, Tranel D, Grabowski T, Adolphs R, Damasio A. Neural systems behind word and concept retrieval. Cognition. 2004;92:179–229.

    Article  PubMed  CAS  Google Scholar 

  72. Kan IP, Thompson-Schill SL. Effect of name agreement on prefrontal activity during overt and covert picture naming. Cogn Affect Behav Neurosci. 2004;4(1):43–57.

    Article  PubMed  Google Scholar 

  73. Blank SC, Scott SK, Murphy K, Warburton E, Wise RJ. Speech production: Wernicke, Broca and beyond. Brain. 2002;125(8):1829–38.

    Article  PubMed  Google Scholar 

  74. Coleman MR, Rodd JM, Davis MH, et al. Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain. 2007;130:2494–507.

    Article  PubMed  Google Scholar 

  75. DeLeon J, Gottesman RF, Kleinman JT, et al. Neural regions essential for distinct cognitive processes underlying picture naming. Brain. 2007;130:1408–22.

    Article  PubMed  Google Scholar 

  76. Passigngham RE. The frontal lobes and voluntary action. Oxford: Oxford University Press; 1995.

    Google Scholar 

  77. Basho S, Palmer ED, Rubio MA, Wulfeck B, Muller RA. Effects of generation mode in fMRI adaptation of semantic fluency: pace production and overt speech. Neuropsychologia. 2007;45(8):1697–706.

    Article  PubMed  Google Scholar 

  78. Boly M, Coleman MR, Davis MH, et al. When thoughts become action: an fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. Neuroimage. 2007;36:979–92.

    Article  PubMed  CAS  Google Scholar 

  79. Dehaene S, Naccache L. Towards a cognitive neuroscience of consciousness: basic evidence and a work-space framework. Cognition. 2001;79:1–37.

    Article  PubMed  CAS  Google Scholar 

  80. Posner MJ, Raichle ME. Images of mind. New York: Scientific American Library; 1994. p. 16.

    Google Scholar 

  81. Friston KJ, Holmes AP, Price CJ, Büchel C, Worsley KJ. Multisubject fMRI studies and conjunction analysis. Neuroimage. 1999;10:385–96.

    Article  PubMed  CAS  Google Scholar 

  82. Desmond JE, Glover GH. Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. J Neurosci Methods. 2002;118:115–28.

    Article  PubMed  Google Scholar 

  83. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. New York: Thieme; 1988.

    Google Scholar 

  84. Friston KJ et al. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp. 1995;2:189.

    Article  Google Scholar 

  85. Mishkin M, Ungerleider LG. Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res. 1982;6(1):57–77.

    Article  PubMed  CAS  Google Scholar 

  86. Buchel C, Friston KJ. Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modeling and fMRI. Cereb Cortex. 1997;7(8):768–78.

    Article  PubMed  CAS  Google Scholar 

  87. Mesulam M-M. From sensation to cognition. Brain. 1998;121:1013–52.

    Article  PubMed  Google Scholar 

  88. Kim Y-H, Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Mesulam M-M. The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. Neuroimage. 1999;9:269–77.

    Article  PubMed  CAS  Google Scholar 

  89. Smith EE, Jonides J. Working memory: a view from neuroimaging. Cogn Psychol. 1997;33:5–42.

    Article  PubMed  CAS  Google Scholar 

  90. Leung H-C, Skudlarski P, Gatenby JC, Peterson BS, Gore JC. An event-related functional MRI study of the Stroop color word interference task. Cereb Cortex. 2000;10:552–60.

    Article  PubMed  CAS  Google Scholar 

  91. D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, Grossman M. The neural basis of the central executive system of working memory. Nature. 1995;378:279–81.

    Article  PubMed  Google Scholar 

  92. Adcock RA, Constable RT, Gore JC, Goldman-Rakic PS. Functional neuroanatomy of executive processes involved in dual-task performance. Proc Natl Acad Sci U S A. 2000;97(7):3567–72.

    Article  PubMed  CAS  Google Scholar 

  93. Casey BJ, Trainor RJ, Orendi JL, Schubert AB, Nystrom LE, Giedd JN, et al. A developmental functional MRI study of prefrontal activation during performance of a Go-No-Go task. J Cogn Neurosci. 1997;9(6):835–47.

    Article  Google Scholar 

  94. Rosen BR, Buckner RL, Dale AM. Event-related functional MRI: past, present, and future. Proc Natl Acad Sci U S A. 1998;95:773–80.

    Article  PubMed  CAS  Google Scholar 

  95. Opitz B, Mecklinger A, Friederici AD, von Cramon DY. The functional neuroanatomy of novelty processing: integrating ERP and fMRI results. Cereb Cortex. 1999;9(4):379–91.

    Article  PubMed  CAS  Google Scholar 

  96. Kruggel F, Herrmann CS, Wiggins CJ, von Cramon DY. Hemodynamic and electroencephalographic responses to illusory figures: recording of the evoked potentials during functional MRI. Neuroimage. 2001;14:1327–36.

    Article  PubMed  CAS  Google Scholar 

  97. Damasio AR. Investigating the biology of consciousness. Philos Trans R Soc Lond B Biol Sci. 1998;353:1879–82.

    Article  PubMed  CAS  Google Scholar 

  98. Dehaene S, Kerszberg M, Changeux JP. A neuronal model of a global workspace in effortful cognitive tasks. Proc Natl Acad Sci U S A. 1998;95(24):14529–34.

    Article  PubMed  CAS  Google Scholar 

  99. Binder JR, Price CJ. Functional imaging of language. In: Cabeza R, Kingstone A, editors. Handbook of functional neuroimaging of cognition. Cambridge, MA: MIT Press; 2001. p. 187–251.

    Google Scholar 

  100. Whalen PJ, Rauch SL, Etcoff NL, McInerney SC, Lee MB, Jenike MA. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J Cogn Neurosci. 1998;18(1):411–8.

    CAS  Google Scholar 

  101. Morris JS, Ohman A, Dolan RJ. Conscious and unconscious emotional learning in the human amygdala. Nature. 1998;393:467–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The first edition of this chapter was written in ­collaboration with Sarah Callahan, who was a psycholinguistic student in my laboratory. She not only researched and provided essential original sources, but also was a partner in the development of the ideas and conceptual organization. Without her critical contributions, this chapter would not have emerged in print. Recent editions were done with the assistance of Melissa Sy, a research assistant in my laboratory at Columbia University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy Hirsch PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hirsch, J. (2011). Brain Mapping for Neurosurgery and Cognitive Neuroscience. In: Faro, S., Mohamed, F., Law, M., Ulmer, J. (eds) Functional Neuroradiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0345-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0345-7_27

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0343-3

  • Online ISBN: 978-1-4419-0345-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics