Skip to main content

Principles of BOLD Functional MRI

  • Chapter
  • First Online:
Book cover Functional Neuroradiology

Abstract

Functional magnetic resonance imaging (fMRI) is one of the most important tools for visualizing neural activity in the human brain. The blood oxygenation level-dependent (BOLD) contrast has been most widely used for its easy implementation and high sensitivity. However, the BOLD signal is dependent on various anatomical, physiological, and imaging parameters, thus its interpretation with respect to physiological parameters is not straightforward. To understand the physiological source of the BOLD signal, measurements of cerebral blood flow (CBF) and cerebral blood volume (CBV) changes are helpful. In this chapter, we discussed (1) various fMRI techniques, (2) the sources of the BOLD fMRI signals, (3) improvement of BOLD techniques, (4) contrast-to-noise consideration, and (5) spatial and temporal resolution. CBF can be measured using arterial spin-labeling MR methods, and CBV change can be detected using a vascular space occupancy-dependent technique. Conventional gradient-echo BOLD fMRI is sensitive to intravascular and extravascular signals of small and large venous vessels, while spin-echo BOLD fMRI is sensitive to intravascular signals of all-sized venous vessels and extravascular signals of small vessels. At high magnetic fields, intravascular signals can be reduced by shortening blood T 2 relative to tissue T 2. Thus, SE BOLD fMRI at high fields improves spatial specificity. Intrinsic spatial and temporal resolution of hemodynamic-based fMRI techniques is dependent on vascular structures and responses. Using fMRI, submillimeter functional structures can be mapped, and an order of second temporal resolution can be achieved. Overall, fMRI opened a window of basic and clinical neuroscience research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roy CS, Sherrington CS. On the regulation of blood supply of the brain. J Physiol. 1890;1:85–108.

    Google Scholar 

  2. Raichle ME. Circulatory and metabolic correlates of brain function in normal humans. In: Handbook of physiology, The nervous system, vol. V. Bethesda: American Physiological Society; 1987. p. 643–74.

    Google Scholar 

  3. Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA. 1986;83:1140–4.

    Article  PubMed  CAS  Google Scholar 

  4. Fox PT, Raichle ME, Mintun MA, Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988;241:462–4.

    Article  PubMed  CAS  Google Scholar 

  5. Ogawa S, Lee T-M, Kay AR, Tank DW. Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation. Proc Natl Acad Sci USA. 1990;87:9868–72.

    Article  PubMed  CAS  Google Scholar 

  6. Ogawa S, Lee T-M, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990;14:68–78.

    Article  PubMed  CAS  Google Scholar 

  7. Ogawa S, Lee TM. Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med. 1990;16(1):9–18.

    Article  PubMed  CAS  Google Scholar 

  8. Thulborn KR, Waterton JC, Mattews PM, Radda GK. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochem Biophys Acta. 1982;714:265–70.

    PubMed  CAS  Google Scholar 

  9. Pauling L, Coryell CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci USA. 1936;22:210–6.

    Article  PubMed  CAS  Google Scholar 

  10. Ogawa S, Tank DW, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA. 1992;89(13):5951–5.

    Article  PubMed  CAS  Google Scholar 

  11. Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA. 1992;89(12):5675–9.

    Article  PubMed  CAS  Google Scholar 

  12. Bandettini PA, Wang EC, Hinks RS, Rikofsky RS, Hyde JS. Time course EPI of human brain function during task activation. Magn Reson Med. 1992;25:390–7.

    Article  PubMed  CAS  Google Scholar 

  13. Ogawa S, Menon RS, Kim S-G, Ugurbil K. On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct. 1998;27:447–74.

    Article  PubMed  CAS  Google Scholar 

  14. Lee S-P, Duong T, Yang G, Iadecola C, Kim S-G. Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: Implications for BOLD fMRI. Magn Reson Med. 2001;45:791–800.

    Article  PubMed  CAS  Google Scholar 

  15. Buxton RB, Wong EC, Frank LR. Dynamics of blood flow and oxygenation changes during brain activation: The balloon model. Magn Reson Med. 1998;39:855–64.

    Article  PubMed  CAS  Google Scholar 

  16. Kim T, Masamoto K, Hendrich K, Kim S-G. Arterial versus total blood volume changes during neural activity-induced cerebral blood flow change: implication for BOLD fMRI. J Cereb Blood Flow Metab. 2007;27:1235–47.

    Article  PubMed  Google Scholar 

  17. Hillman EM, Devor A, Bouchard MB, et al. Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation. Neuroimage. 2007;35(1):89–104.

    Article  PubMed  Google Scholar 

  18. Grubb RL, Raichle ME, Eichling JO, Ter-Pogossian MM. The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke. 1974;5:630–9.

    Article  PubMed  Google Scholar 

  19. Ogawa S, Menon RS, Tank DW, et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J. 1993;64(3):803–12.

    Article  PubMed  CAS  Google Scholar 

  20. Turner R. How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes. Neuroimag. 2002;16:1062–7.

    Article  Google Scholar 

  21. Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med. 1992;23:37–45.

    Article  PubMed  CAS  Google Scholar 

  22. Edelman RR, Siewert B, Darby DG, et al. Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology. 1994;192:513–20.

    PubMed  CAS  Google Scholar 

  23. Kim S-G. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med. 1995;34:293–301.

    Article  PubMed  CAS  Google Scholar 

  24. Kwong KK, Chesler DA, Weisskoff RM, et al. MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med. 1995;34:878–87.

    Article  PubMed  CAS  Google Scholar 

  25. Wong E, Buxton R, Frank L. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med. 1998;39:702–8.

    Article  PubMed  CAS  Google Scholar 

  26. Zaini MR, Strother SC, Andersen JR, et al. Comparison of matched BOLD and FAIR 4.0 T-fMRI with [15O]water PET brain volumes. Med Phys. 1999;26:1559–67.

    Article  PubMed  CAS  Google Scholar 

  27. Duong TQ, Kim D-S, Ugurbil K, Kim S-G. Localized cerebral blood flow response at submillimeter columnar resolution. Proc Natl Acad Sci USA. 2001;98:10904–9.

    Article  PubMed  CAS  Google Scholar 

  28. Ye FQ, Mattay VS, Jezzard P, Frank JA, Weinberger DR, McLaughlin AC. Correction for vascular artifacts in cerebral blood flow values by using arterial spin tagging techniques. Magn Reson Med. 1997;37:226–35.

    Article  PubMed  CAS  Google Scholar 

  29. Buxton R, Frank L, Wong E, Siewert B, Warach S, Edelman R. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med. 1998;40:383–96.

    Article  PubMed  CAS  Google Scholar 

  30. Alsop D, Detre J. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab. 1996;16:1236–49.

    Article  PubMed  CAS  Google Scholar 

  31. Belliveau JW, Kennedy DN, McKinstry RC, et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science. 1991;254:716–9.

    Article  PubMed  CAS  Google Scholar 

  32. Mandeville JB, Marota JJ, Kosofsky BE, et al. Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magn Reson Med. 1998;39(4):615–24.

    Article  PubMed  CAS  Google Scholar 

  33. Kim S-G, Ugurbil K. High-resolution functional magnetic resonance imaging of the animal brain. Methods. 2003;30:28–41.

    Article  PubMed  CAS  Google Scholar 

  34. Zhao F, Wang P, Hendrich K, Ugurbil K, Kim S-G. Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation. Neuroimage. 2006;30:1149–60.

    Article  PubMed  Google Scholar 

  35. Zhao F, Wang P, Hendrich K, Kim S-G. Spatial specificity of cerebral blood volume-weighted fMRI responses at columnar resolution. Neuroimag. 2005;27:416–24.

    Article  CAS  Google Scholar 

  36. Fukuda M, Moon C-H, Wang P, Kim S-G. Mapping iso-orientation columns by contrast agent-enhanced functional MRI: reproducibility, specificity and evaluation by optical imaging of intrinsic signal. J Neurosci. 2006;26:11821–32.

    Article  PubMed  CAS  Google Scholar 

  37. Lu H, Golay X, Pekar J, Van Zijl P. Functional magnetic resonance imaging based on changes in vascular space occupancy. Mag Reson Med. 2003;50:263–74.

    Article  Google Scholar 

  38. Jin T, Kim SG. Improved cortical-layer specificity of vascular space occupancy fMRI with slab inversion relative to spin-echo BOLD at 9.4 T. Neuroimag. 2008;40:59–67.

    Article  Google Scholar 

  39. Wright GA, Hu BS, Macovski A. Estimating oxygen saturation of blood in vivo with MR imaging at 1.5 T. J Magn Reson Imag. 1991;1:275–83.

    Article  CAS  Google Scholar 

  40. Zhao J, Clingman C, Närväinen M, Kauppinen R, van Zijl P. Oxygenation and hemotocrit dependence of transverse relaxation rates of blood at 3 T. Magn Reson Med. 2007;58:592–7.

    Article  PubMed  Google Scholar 

  41. Ogawa S, Lee TM, Barrere B. Sensitivity of magnetic resonance image signals of a rat brain to changes in the cerebral venous blood oxygenation. Magn Reson Med. 1993;29:205–10.

    Article  PubMed  CAS  Google Scholar 

  42. Lee S-P, Silva AC, Ugurbil K, Kim S-G. Diffusion-weighted spin-echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal change. Magn Reson Med. 1999;42:919–28.

    Article  PubMed  CAS  Google Scholar 

  43. Breger RK, Rimm AA, Fischer ME, Papke RA, Haughten VM. T1 and T2 Measurements on a 1.5 Tesla Commercial Imager. Radiology. 1989;171:273–6.

    PubMed  CAS  Google Scholar 

  44. Gelman N, Gorell J, Barker P, et al. MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology. 1999;210:759–67.

    PubMed  CAS  Google Scholar 

  45. Yacoub E, Shmuel A, Pfeuffer J, et al. Imaging brain function in humans at 7 Tesla. Magn Reson Med. 2001;45:588–94.

    Article  PubMed  CAS  Google Scholar 

  46. Haacke EM, Lai S, Reichenbach JR, et al. In vivo measurement of blood oxygen saturation using magnetic resonance imaging: a direct validation of the blood oxygen level-dependent concept in functional brain mapping. Hum Brain Mapp. 1997;5:341–7.

    Article  PubMed  CAS  Google Scholar 

  47. Boxerman JL, Bandettini PA, Kwong KK, et al. The intravascular contribution to fMRI signal change: Monte Carlo modeling and ­diffusion-weighted studies in vivo. Magn Reson Med. 1995;34:4–10.

    Article  PubMed  CAS  Google Scholar 

  48. Bandettini PA, Wong EC. Effects of biophysical and physiologic parameters on brain activation-induced R2* and R2 changes: Simulations using determistic diffusion model. Int J Imaging Syst Technol. 1995;6:133–52.

    Article  Google Scholar 

  49. Song AW, Wong EC, Tan SG, Hyde JS. Diffusion weighted fMRI at 1.5 T. Magn Reson Med. 1996;35(2):155–8.

    Article  PubMed  CAS  Google Scholar 

  50. Zhong J, Kennan RP, Fulbright RK, Gore JC. Quantification of intravascular and extravascular contributions to BOLD effects induced by alteration in oxygenation or intravascular contrast agents. Magn Reson Med. 1998;40(4):526–36.

    Article  PubMed  CAS  Google Scholar 

  51. Duong TQ, Yacoub E, Adriany G, Hu X, Ugurbil K, Kim S-G. Microvascular BOLD contribution at 4 and 7 T in the human brain: Gradient-echo and spin-echo fMRI with suppression of blood effects. Mag Reson Med. 2003;49(6):1019–27.

    Article  Google Scholar 

  52. Yacoub E, Harel N, Ugurbil K. High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci USA. 2008;105:10607–12.

    Article  PubMed  CAS  Google Scholar 

  53. Moon CH, Fukuda M, Park SH, Kim SG. Neural interpretation of blood oxygenation level-dependent fMRI maps at submillimeter columnar resolution. J Neurosci. 2007;27(26):6892–902.

    Article  PubMed  CAS  Google Scholar 

  54. Zhao F, Wang P, Kim SG. Cortical depth-dependent gradient-echo and spin-echo BOLD fMRI at 9.4 T. Magn Reson Med. 2004;51(3):518–24.

    Article  PubMed  Google Scholar 

  55. Duvernoy HM, Delon S, Vannson JL. Cortical blood vessels of the human brain. Brain Res Bull. 1981;7(5):519–79.

    Article  PubMed  CAS  Google Scholar 

  56. Duong TQ, Silva AC, Lee S-P, Kim S-G. Functional MRI of calcium-dependent synaptic activity: Cross correlation with CBF and BOLD measurements. Magn Reson Med. 2000;43:383–92.

    Article  PubMed  CAS  Google Scholar 

  57. Jin T, Kim SG. Cortical layer-dependent dynamic blood oxygenation, cerebral blood flow and cerebral blood volume responses during visual stimulation. Neuroimag. 2008;43:1–9.

    Article  Google Scholar 

  58. Lee S-P, Silva AC, Kim S-G. Comparison of diffusion-weighted high-resolution CBF and spin-echo BOLD fMRI at 9.4 T. Magn Reson Med. 2002;47:736–41.

    Article  PubMed  Google Scholar 

  59. Bandettini PA. The temporal resolution of functional MRI. In: Moonen CTW, Bandettini PA, editors. Functional MRI. New York: Springer; 1999. p. 205–20.

    Google Scholar 

  60. Kim S-G, Tsekos NV, Ashe J. Multi-slice perfusion-based functional MRI using the FAIR technique: Comparison of CBF and BOLD effects. NMR Biomed. 1997;10:191–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Gi Kim PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kim, SG., Bandettini, P.A. (2011). Principles of BOLD Functional MRI. In: Faro, S., Mohamed, F., Law, M., Ulmer, J. (eds) Functional Neuroradiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0345-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0345-7_16

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0343-3

  • Online ISBN: 978-1-4419-0345-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics