Skip to main content

Functional Neuroradiology of Traumatic Brain Injury

  • Chapter
  • First Online:
Functional Neuroradiology

Abstract

Traumatic brain injury (TBI) is one of the most important causes of morbidity and mortality in the modern world. Each year in USA alone, more than two million people sustain a head trauma, and 10% of these injuries are fatal [1]. In addition, 10% of survivors experience neurological deficits of varying degrees [2], and it is estimated that as many as 5.3 million people are living in USA with disability related to TBI, approximately 2% of the population [3]. The leading cause of TBI is injury related to falls, followed by motor-vehicle or traffic collisions, and external cause of being “struck by or against” [1]. The classification of the clinical severity of TBI is based on the Glasgow Coma Scale (GCS) [4]. The GCS is a neurological scale that allows the recording of the level of consciousness through the assessment of eye, motor, and verbal responses. The severity distribution is approximately 80% mild (GCS score of 13–15), 10% moderate (GCS score of 12–9), and 10% severe (GCS scores of 8 or less).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown AW, Elovic EP, Kothari S, Flanagan SR, Kwasnica C. Congenital and acquired brain injury. 1. Epidemiology, pathophysiology, prognostication, innovative treatments, and prevention. Arch Phys Med Rehabil. 2008;89(3 Suppl 1):S3–8.

    Article  PubMed  Google Scholar 

  2. Gentry LR. Imaging of closed head injury. Radiology. 1994;191(1):1–17.

    PubMed  CAS  Google Scholar 

  3. Thurman DJ, Alverson C, Dunn KA, Guerrero J, Sniezek JE. Traumatic brain injury in the United States: a public health perspective. J Head Trauma Rehabil. 1999;14(6):602–15.

    Article  PubMed  CAS  Google Scholar 

  4. Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;2(7872):81–4.

    Article  PubMed  CAS  Google Scholar 

  5. Gentry LR, Godersky JC, Thompson B. MR imaging of head trauma: review of the distribution and radiopathologic features of traumatic lesions. AJR Am J Roentgenol. 1988;150(3):663–72.

    PubMed  CAS  Google Scholar 

  6. Gentry LR, Thompson B, Godersky JC. Trauma to the corpus callosum: MR features. AJNR Am J Neuroradiol. 1988;9(6):1129–38.

    PubMed  CAS  Google Scholar 

  7. Gennarelli TA. The spectrum of traumatic axonal injury. Neuropathol Appl Neurobiol. 1996;22(6):509–13.

    Article  PubMed  CAS  Google Scholar 

  8. Parizel PM, Ozsarlak, Van Goethem JW, van den Hauwe L, Dillen C, Verlooy J, et al. Imaging findings in diffuse axonal injury after closed head trauma. Eur Radiol. 1998;8(6):960–5.

    Google Scholar 

  9. Gomori JM, Grossman RI, Goldberg HI, Zimmerman RA, Bilaniuk LT. Intracranial hematomas: imaging by high-field MR. Radiology. 1985;157(1):87–93.

    PubMed  CAS  Google Scholar 

  10. Mittl RL, Grossman RI, Hiehle JF, Hurst RW, Kauder DR, Gennarelli TA, et al. Prevalence of MR evidence of diffuse axonal injury in patients with mild head injury and normal head CT findings. AJNR Am J Neuroradiol. 1994;15(8):1583–9.

    PubMed  CAS  Google Scholar 

  11. Haacke EM, Xu Y, Cheng Y-CN, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 2004;52(3):612–8.

    Google Scholar 

  12. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng Y-CN. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol. 2009;30(1):19–30.

    Article  PubMed  CAS  Google Scholar 

  13. Mittal S, Wu Z, Neelavalli J, Haacke EM. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol. 2009;30(2):232–52.

    Article  PubMed  CAS  Google Scholar 

  14. Scheid R, Preul C, Gruber O, Wiggins C, von Cramon DY. Diffuse axonal injury associated with chronic traumatic brain injury: evidence from T2*-weighted gradient-echo imaging at 3 T. AJNR Am J Neuroradiol. 2003;24(6):1049–56.

    PubMed  Google Scholar 

  15. Adams JH, Doyle D, Ford I, Gennarelli TA, Graham DI, McLellan DR. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology. 1989;15(1):49–59.

    Article  PubMed  CAS  Google Scholar 

  16. Tong KA, Ashwal S, Holshouser BA, Shutter LA, Herigault G, Haacke EM, et al. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology. 2003;227(2):332–9.

    Article  PubMed  Google Scholar 

  17. Tong KA, Ashwal S, Holshouser BA, Nickerson JP, Wall CJ, Shutter LA, et al. Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions. Ann Neurol. 2004;56(1):36–50.

    Article  PubMed  Google Scholar 

  18. Babikian T, Freier MC, Tong KA, Nickerson JP, Wall CJ, Holshouser BA, et al. Susceptibility weighted imaging: neuropsychologic outcome and pediatric head injury. Pediatr Neurol. 2005;33(3):184–94.

    Article  PubMed  Google Scholar 

  19. Mannion RJ, Cross J, Bradley P, Coles JP, Chatfield D, Carpenter A, et al. Mechanism-based MRI classification of traumatic brainstem injury and its relationship to outcome. J Neurotrauma. 2007;24(1):128–35.

    Article  PubMed  Google Scholar 

  20. Chastain C, Oyoyo U, Zipperman M, Joo E, Ashwal S, Shutter L. et al. J Neurotrauma: Predicting outcomes of traumatic brain injury by imaging modality and injury distribution; 2009.

    Google Scholar 

  21. Akiyama Y, Miyata K, Harada K, Minamida Y, Nonaka T, Koyanagi I, et al. Susceptibility-weighted magnetic resonance imaging for the detection of cerebral microhemorrhage in patients with traumatic brain injury. Neurol Med Chir (Tokyo). 2009;49(3):97–9. discussion 9.

    Article  Google Scholar 

  22. Orrison WW, Gentry LR, Stimac GK, Tarrel RM, Espinosa MC, Cobb LC. Blinded comparison of cranial CT and MR in closed head injury evaluation. AJNR Am J Neuroradiol. 1994;15(2):351–6.

    PubMed  CAS  Google Scholar 

  23. Shen Y, Kou Z, Kreipke CW, Petrov T, Hu J, Haacke EM. In vivo measurement of tissue damage, oxygen saturation changes and blood flow changes after experimental traumatic brain injury in rats using susceptibility weighted imaging. Magn Reson Imaging. 2007;25(2):219–27.

    Article  PubMed  Google Scholar 

  24. Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology. 2000;217(2):331–45.

    PubMed  CAS  Google Scholar 

  25. Gass A, Niendorf T, Hirsch JG. Acute and chronic changes of the apparent diffusion coefficient in neurological disorders–biophysical mechanisms and possible underlying histopathology. J Neurol Sci. 2001;186 Suppl 1:S15–23.

    Article  PubMed  Google Scholar 

  26. Hergan K, Schaefer PW, Sorensen AG, Gonzalez RG, Huisman TAGM. Diffusion-weighted MRI in diffuse axonal injury of the brain. Eur Radiol. 2002;12(10):2536–41.

    PubMed  CAS  Google Scholar 

  27. Huisman TAGM, Sorensen AG, Hergan K, Gonzalez RG, Schaefer PW. Diffusion-weighted imaging for the evaluation of diffuse axonal injury in closed head injury. J Comput Assist Tomogr. 2003;27(1):5–11.

    Article  PubMed  Google Scholar 

  28. Liu AY, Maldjian JA, Bagley LJ, Sinson GP, Grossman RI. Traumatic brain injury: diffusion-weighted MR imaging findings. AJNR Am J Neuroradiol. 1999;20(9):1636–41.

    PubMed  CAS  Google Scholar 

  29. Schaefer PW, Huisman TAGM, Sorensen AG, Gonzalez RG, Schwamm LH. Diffusion-weighted MR imaging in closed head injury: high correlation with initial Glasgow coma scale score and score on modified Rankin scale at discharge. Radiology. 2004;233(1):58–66.

    Article  PubMed  Google Scholar 

  30. Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 2006;51(5):527–39.

    Article  PubMed  CAS  Google Scholar 

  31. Mac Donald CL, Dikranian K, Song SK, Bayly P, Holtzman D, Brody D. Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. Exp Neurol. 2007;205(1):116–31.

    Article  PubMed  CAS  Google Scholar 

  32. Arfanakis K, Haughton VM, Carew JD, Rogers BP, Dempsey RJ, Meyerand ME. Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol. 2002;23(5):794–802.

    PubMed  Google Scholar 

  33. Huisman TAGM, Schwamm LH, Schaefer PW, Koroshetz WJ, Shetty-Alva N, Ozsunar Y, et al. Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR Am J Neuroradiol. 2004;25(3):370–6.

    PubMed  Google Scholar 

  34. Inglese M, Makani S, Johnson G, Cohen BA, Silver JA, Gonen O, et al. Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. J Neurosurg. 2005;103(2):298–303.

    Article  PubMed  Google Scholar 

  35. Salmond CH, Menon DK, Chatfield DA, Williams GB, Pena A, Sahakian BJ, et al. Diffusion tensor imaging in chronic head injury survivors: correlations with learning and memory indices. Neuroimage. 2006;29(1):117–24.

    Article  PubMed  CAS  Google Scholar 

  36. Tisserand DJ, Stanisz G, Lobaugh N, Gibson E, Li T, Black SE, et al. Diffusion tensor imaging for the evaluation of white matter pathology in traumatic brain injury. Brain Cogn. 2006;60(2):216–7.

    PubMed  CAS  Google Scholar 

  37. Benson RR, Meda SA, Vasudevan S, Kou Z, Govindarajan KA, Hanks RA, et al. Global white matter analysis of diffusion tensor images is predictive of injury severity in traumatic brain injury. J Neurotrauma. 2007;24(3):446–59.

    Article  PubMed  Google Scholar 

  38. Rutgers DR, Fillard P, Paradot G, Tadié M, Lasjaunias PL, Ducreux D. Diffusion tensor imaging characteristics of the corpus callosum in mild, moderate, and severe traumatic brain injury. AJNR Am J Neuroradiol. 2008;29(9):1730–5.

    Article  PubMed  CAS  Google Scholar 

  39. Lo C, Shifteh K, Gold T, Bello JA, Lipton ML. Diffusion tensor imaging abnormalities in patients with mild traumatic brain injury and neurocognitive impairment. J Comput Assist Tomogr. 2009;33(2):293–7.

    Article  PubMed  Google Scholar 

  40. Rutgers DR, Toulgoat F, Cazejust J, Fillard P, Lasjaunias PL, Ducreux D. White matter abnormalities in mild traumatic brain injury: a diffusion tensor imaging study. AJNR Am J Neuroradiol. 2008;29(3):514–9.

    Article  PubMed  CAS  Google Scholar 

  41. Niogi SN, Mukherjee P, Ghajar J, Johnson C, Kolster R, Sarkar R, et al. Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3 T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol. 2008;29(5):967–73.

    Article  PubMed  CAS  Google Scholar 

  42. Lipton ML, Gulko E, Zimmerman M, Friedman B, Kim M, Gellella E, et al. Diffusion-tensor imaging implicates prefrontal axonal injury in executive function impairment following very mild traumatic brain injury. Radiology. 2009;252(3):816–24.

    Article  PubMed  Google Scholar 

  43. Ryan LM, Warden DL. Post concussion syndrome. Int Rev Psychiatry (Abingdon Engl). 2003;15(4):310–6.

    Article  Google Scholar 

  44. Miles L, Grossman RI, Johnson G, Babb JS, Diller L, Inglese M. Short-term DTI predictors of cognitive dysfunction in mild traumatic brain injury. Brain Inj. 2008;22(2):115–22.

    Article  PubMed  Google Scholar 

  45. Lu H, Jensen JH, Ramani A, Helpern JA. Three-dimensional characterization of non-gaussian water diffusion in humans using diffusion kurtosis imaging. NMR Biomed. 2006;19(2):236–47.

    Article  PubMed  Google Scholar 

  46. Lipton ML, Gellella E, Lo C, Gold T, Ardekani BA, Shifteh K, et al. Multifocal white matter ultrastructural abnormalities in mild traumatic brain injury with cognitive disability: a voxel-wise analysis of diffusion tensor imaging. J Neurotrauma. 2008;25(11):1335–42.

    Article  PubMed  Google Scholar 

  47. Perlbarg V, Puybasset L, Tollard E, Lehéricy S, Benali H, Galanaud D. Relation between brain lesion location and clinical outcome in patients with severe traumatic brain injury: a diffusion tensor imaging study using voxel-based approaches. Hum Brain Mapp. 2009;30(12):3924–33.

    Article  PubMed  Google Scholar 

  48. Huang M, Theilmann R, Robb A, Angeles A, Nichols S, Drake A. et al. J Neurotrauma: Integrated imaging approach with MEG and DTI to detect mild traumatic brain injury in military and civilian patients; 2009.

    Google Scholar 

  49. Bendlin BB, Ries ML, Lazar M, Alexander AL, Dempsey RJ, Rowley HA, et al. Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. Neuroimage. 2008;42(2):503–14.

    Article  PubMed  Google Scholar 

  50. Sidaros A, Engberg AW, Sidaros K, Liptrot MG, Herning M, Petersen P, et al. Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study. Brain. 2008;131(Pt 2):559–72.

    Article  PubMed  Google Scholar 

  51. Kumar R, Husain M, Gupta RK, Hasan KM, Haris M, Agarwal AK, et al. Serial changes in the white matter diffusion tensor imaging metrics in moderate traumatic brain injury and correlation with neuro-cognitive function. J Neurotrauma. 2009;26(4):481–95.

    Article  PubMed  Google Scholar 

  52. Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol. 2008;29(4):632–41.

    Article  PubMed  CAS  Google Scholar 

  53. Medana IM, Esiri MM. Axonal damage: a key predictor of outcome in human CNS diseases. Brain. 2003;126(Pt 3):515–30.

    Article  PubMed  CAS  Google Scholar 

  54. Le TH, Mukherjee P, Henry RG, Berman JI, Ware M, Manley GT. Diffusion tensor imaging with three-dimensional fiber tractography of traumatic axonal shearing injury: an imaging correlate for the posterior callosal “disconnection” syndrome: case report. Neurosurgery. 2005;56(1):189.

    PubMed  Google Scholar 

  55. Wang JY, Bakhadirov K, Devous MD, Abdi H, McColl R, Moore C, et al. Diffusion tensor tractography of traumatic diffuse axonal injury. Arch Neurol. 2008;65(5):619–26.

    Article  PubMed  Google Scholar 

  56. Levin HS, Wilde EA, Chu Z, Yallampalli R, Hanten GR, Li X, et al. Diffusion tensor imaging in relation to cognitive and functional outcome of traumatic brain injury in children. J Head Trauma Rehabil. 2008;23(4):197–208.

    Article  PubMed  Google Scholar 

  57. Wilde EA, McCauley SR, Hunter JV, Bigler ED, Chu Z, Wang ZJ, et al. Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology. 2008;70(12):948–55.

    Article  PubMed  CAS  Google Scholar 

  58. Caeyenberghs K, Leemans A, Geurts M, Taymans T, Linden CV, Smits-Engelsman BCM, et al. Brain-behavior relationships in young traumatic brain injury patients: DTI metrics are highly correlated with postural control. Hum Brain Mapp. 2010;31(7):992–1002.

    Article  PubMed  Google Scholar 

  59. Chu Z, Wilde EA, Hunter JV, McCauley SR, Bigler ED, Troyanskaya M. et al. AJNR Am J Neuroradiol: Voxel-based analysis of diffusion tensor imaging in mild traumatic brain injury in adolescents; 2009.

    Google Scholar 

  60. Wozniak JR, Krach L, Ward E, Mueller BA, Muetzel R, Schnoebelen S, et al. Neurocognitive and neuroimaging correlates of pediatric traumatic brain injury: a diffusion tensor imaging (DTI) study. Arch Clin Neuropsychol: Off J Natl Acad Neuropsychologists. 2007;22(5):555–68.

    Google Scholar 

  61. Ratai E, Gonzalez G. Magnetic resonance spectroscopy and the biochemical basis of neurologic disease. In: Atlas SW, editor. Magnetic resonance imaging of the brain and spine. 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2008. p. 1836.

    Google Scholar 

  62. Friedman SD, Brooks WM, Jung RE, Hart BL, Yeo RA. Proton MR spectroscopic findings correspond to neuropsychological function in traumatic brain injury. AJNR Am J Neuroradiol. 1998;19(10):1879–85.

    PubMed  CAS  Google Scholar 

  63. Holshouser BA, Tong KA, Ashwal S, Oyoyo U, Ghamsary M, Saunders D, et al. Prospective longitudinal proton magnetic ­resonance spectroscopic imaging in adult traumatic brain injury. J Magn Reson Imaging. 2006;24(1):33–40.

    Article  PubMed  Google Scholar 

  64. Holshouser BA, Tong KA, Ashwal S. Proton MR spectroscopic imaging depicts diffuse axonal injury in children with traumatic brain injury. AJNR Am J Neuroradiol. 2005;26(5):1276–85.

    PubMed  Google Scholar 

  65. Babikian T, Freier M-C, Ashwal S, Riggs ML, Burley T, Holshouser BA. MR spectroscopy: predicting long-term neuropsychological outcome following pediatric TBI. J Magn Reson Imaging. 2006;24(4):801–11.

    Article  PubMed  Google Scholar 

  66. Cohen BA, Inglese M, Rusinek H, Babb JS, Grossman RI, Gonen O. Proton MR spectroscopy and MRI-volumetry in mild traumatic brain injury. AJNR Am J Neuroradiol. 2007;28(5):907–13.

    PubMed  CAS  Google Scholar 

  67. Tollard E, Galanaud D, Perlbarg V, Sanchez-Pena P, Le Fur Y, Abdennour L, et al. Experience of diffusion tensor imaging and 1 H spectroscopy for outcome prediction in severe traumatic brain injury: Preliminary results. Crit Care Med. 2009;37(4):1448–55.

    Article  PubMed  Google Scholar 

  68. Ross BD, Ernst T, Kreis R, Haseler LJ, Bayer S, Danielsen E, et al. 1 H MRS in acute traumatic brain injury. J Magn Reson Imaging. 1998;8(4):829–40.

    Article  PubMed  CAS  Google Scholar 

  69. Garnett MR, Corkill RG, Blamire AM, Rajagopalan B, Manners DN, Young JD, et al. Altered cellular metabolism following ­traumatic brain injury: a magnetic resonance spectroscopy study. J Neurotrauma. 2001;18(3):231–40.

    Article  PubMed  CAS  Google Scholar 

  70. Cecil KM, Hills EC, Sandel ME, Smith DH, McIntosh TK, Mannon LJ, et al. Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. J Neurosurg. 1998;88(5):795–801.

    Article  PubMed  CAS  Google Scholar 

  71. Garnett MR, Blamire AM, Rajagopalan B, Styles P, Cadoux-Hudson TA. Evidence for cellular damage in normal-appearing white matter correlates with injury severity in patients following traumatic brain injury: a magnetic resonance spectroscopy study. Brain. 2000;123(Pt 7):1403–9.

    Article  PubMed  Google Scholar 

  72. Signoretti S, Marmarou A, Fatouros P, Hoyle R, Beaumont A, Sawauchi S, et al. Application of chemical shift imaging for measurement of NAA in head injured patients. Acta Neurochir Suppl. 2002;81:373–5.

    PubMed  CAS  Google Scholar 

  73. Carpentier A, Galanaud D, Puybasset L, Muller J-C, Lescot T, Boch A-L, et al. Early morphologic and spectroscopic magnetic resonance in severe traumatic brain injuries can detect “invisible brain stem damage” and predict “vegetative states”. J Neurotrauma. 2006;23(5):674–85.

    Article  PubMed  Google Scholar 

  74. Ariza M, Junqué C, Mataró M, Poca MA, Bargalló N, Olondo M, et al. Neuropsychological correlates of basal ganglia and medial temporal lobe NAA/Cho reductions in traumatic brain injury. Arch Neurol. 2004;61(4):541–4.

    Article  PubMed  Google Scholar 

  75. Kirov I, Fleysher L, Babb JS, Silver JM, Grossman RI, Gonen O. Characterizing “mild” in traumatic brain injury with proton MR spectroscopy in the thalamus: initial findings. Brain Inj. 2007;21(11):1147–54.

    Article  PubMed  Google Scholar 

  76. Gasparovic C, Yeo RA, Mannell M, Ling J, Elgie R, Phillips JP, et al. Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: a 1H magnetic resonance spectroscopy study. J Neurotrauma. 2009;26(10):1635–43.

    Article  PubMed  Google Scholar 

  77. Holshouser BA, Ashwal S, Luh GY, Shu S, Kahlon S, Auld KL, et al. Proton MR spectroscopy after acute central nervous system injury: outcome prediction in neonates, infants, and children. Radiology. 1997;202(2):487–96.

    PubMed  CAS  Google Scholar 

  78. Yeo RA, Phillips JP, Jung RE, Brown AJ, Campbell RC, Brooks WM. Magnetic resonance spectroscopy detects brain injury and predicts cognitive functioning in children with brain injuries. J Neurotrauma. 2006;23(10):1427–35.

    Article  PubMed  Google Scholar 

  79. Ashwal S, Holshouser BA, Shu SK, Simmons PL, Perkin RM, Tomasi LG, et al. Predictive value of proton magnetic resonance spectroscopy in pediatric closed head injury. Pediatr Neurol. 2000;23(2):114–25.

    Article  PubMed  CAS  Google Scholar 

  80. Ashwal S, Holshouser BA, Tong KA, Serna T, Osterdock R, Gross M, et al. Proton MR spectroscopy detected glutamate/glutamine is increased in children with traumatic brain injury. J Neurotrauma. 2004;21(11):1539–52.

    Article  PubMed  CAS  Google Scholar 

  81. Ashwal S, Holshouser BA, Tong KA, Serna T, Osterdock R, Gross M, et al. Proton spectroscopy detected myoinositol in children with traumatic brain injury. Pediatr Res. 2004;56(4):630–8.

    Article  PubMed  CAS  Google Scholar 

  82. Coles JP. Regional ischemia after head injury. Curr Opin Crit Care. 2004;10(2):120–5.

    Article  PubMed  Google Scholar 

  83. Bonne O, Gilboa A, Louzoun Y, Kempf-Sherf O, Katz M, Fishman Y, et al. Cerebral blood flow in chronic symptomatic mild traumatic brain injury. Psychiatry Res. 2003;124(3):141–52.

    Article  PubMed  Google Scholar 

  84. Kochanek PM, Hendrich KS, Dixon CE, Schiding JK, Williams DS, Ho C. Cerebral blood flow at one year after controlled cortical impact in rats: assessment by magnetic resonance imaging. J Neurotrauma. 2002;19(9):1029–37.

    Article  PubMed  Google Scholar 

  85. Graham DI, Ford I, Adams JH, Doyle D, Teasdale GM, Lawrence AE, et al. Ischaemic brain damage is still common in fatal non-missile head injury. J Neurol Neurosurg Psychiatry. 1989;52(3):346–50.

    Article  PubMed  CAS  Google Scholar 

  86. Abu-Judeh HH, Singh M, Masdeu JC, Abdel-Dayem HM. Discordance between FDG uptake and technetium-99 m-HMPAO brain perfusion in acute traumatic brain injury. J Nucl Med. 1998;39(8):1357–9.

    PubMed  CAS  Google Scholar 

  87. Newton MR, Greenwood RJ, Britton KE, Charlesworth M, Nimmon CC, Carroll MJ, et al. A study comparing SPECT with CT and MRI after closed head injury. J Neurol Neurosurg Psychiatry. 1992;55(2):92–4.

    Article  PubMed  CAS  Google Scholar 

  88. McLaughlin MR, Marion DW. Cerebral blood flow and vasoresponsivity within and around cerebral contusions. J Neurosurg. 1996;85(5):871–6.

    Article  PubMed  CAS  Google Scholar 

  89. Jünger EC, Newell DW, Grant GA, Avellino AM, Ghatan S, Douville CM, et al. Cerebral autoregulation following minor head injury. J Neurosurg. 1997;86(3):425–32.

    Article  PubMed  Google Scholar 

  90. Jacobs A, Put E, Ingels M, Bossuyt A. Prospective evaluation of technetium-99 m-HMPAO SPECT in mild and moderate traumatic brain injury. J Nucl Med. 1994;35(6):942–7.

    PubMed  CAS  Google Scholar 

  91. Jacobs A, Put E, Ingels M, Put T, Bossuyt A. One-year follow-up of technetium-99 m-HMPAO SPECT in mild head injury. J Nucl Med. 1996;37(10):1605–9.

    PubMed  CAS  Google Scholar 

  92. Nakamizo A, Inamura T, Amano T, Inoha S, Tokuda K, Yasuda O, et al. Decreased thalamic metabolism without thalamic magnetic resonance imaging abnormalities following shearing injury to the substantia nigra. J Clin Neurosci: Off J Neurosurg Soc Australasia. 2002;9(6):685–8.

    Google Scholar 

  93. Kant R, Smith-Seemiller L, Isaac G, Duffy J. Tc-HMPAO SPECT in persistent post-concussion syndrome after mild head injury: comparison with MRI/CT. Brain Inj. 1997;11(2):115–24.

    Article  PubMed  CAS  Google Scholar 

  94. Abu-Judeh HH, Parker R, Aleksic S, Singh ML, Naddaf S, Atay S, et al. SPECT brain perfusion findings in mild or moderate traumatic brain injury. Nucl Med Rev Cent East Eur. 2000;3(1):5–11.

    PubMed  CAS  Google Scholar 

  95. Gross H, Kling A, Henry G, Herndon C, Lavretsky H. Local ­cerebral glucose metabolism in patients with long-term behavioral and cognitive deficits following mild traumatic brain injury. J Neuropsychiatry Clin Neurosci. 1996;8(3):324–34.

    PubMed  CAS  Google Scholar 

  96. Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab. 1996;16(6):1236–49.

    Article  PubMed  CAS  Google Scholar 

  97. Garnett MR, Blamire AM, Corkill RG, Rajagopalan B, Young JD, Cadoux-Hudson TA, et al. Abnormal cerebral blood volume in regions of contused and normal appearing brain following traumatic brain injury using perfusion magnetic resonance imaging. J Neurotrauma. 2001;18(6):585–93.

    Article  PubMed  CAS  Google Scholar 

  98. Ge Y, Patel MB, Chen Q, Grossman EJ, Zhang K, Miles L, et al. Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labelling MR imaging at 3 T. Brain Inj. 2009;23(7):666–74.

    Article  PubMed  Google Scholar 

  99. Roy CS, Sherrington CS. On the regulation of the blood-supply of the brain. J Physiol (Lond). 1890;11(1–2):85–158. 17.

    CAS  Google Scholar 

  100. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A. 1992;89(12):5675–9.

    Article  PubMed  CAS  Google Scholar 

  101. Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med: Off J Soc Magn Reson Med Soc Magn Reson Med. 1990;14(1):68–78.

    CAS  Google Scholar 

  102. Rasmussen I-A, Xu J, Antonsen IK, Brunner J, Skandsen T, Axelson DE, et al. Simple dual tasking recruits prefrontal cortices in chronic severe traumatic brain injury patients, but not in controls. J Neurotrauma. 2008;25(9):1057–70.

    Article  PubMed  Google Scholar 

  103. Sanchez-Carrion R, Fernandez-Espejo D, Junque C, Falcon C, Bargallo N, Roig T, et al. A longitudinal fMRI study of working memory in severe TBI patients with diffuse axonal injury. Neuroimage. 2008;43(3):421–9.

    Article  PubMed  Google Scholar 

  104. Turner GR, Levine B. Augmented neural activity during executive control processing following diffuse axonal injury. Neurology. 2008;71(11):812–8.

    Article  PubMed  Google Scholar 

  105. Scheibel RS, Newsome MR, Troyanskaya M, Steinberg JL, Goldstein FC, Mao H, et al. Effects of severity of traumatic brain injury and brain reserve on cognitive-control related brain activation. J Neurotrauma. 2009;26(9):1447–61.

    Article  PubMed  Google Scholar 

  106. Boly M, Coleman MR, Davis MH, Hampshire A, Bor D, Moonen G, et al. When thoughts become action: an fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. Neuroimage. 2007;36(3):979–92.

    Article  PubMed  CAS  Google Scholar 

  107. Cauda F, Micon BM, Sacco K, Duca S, D’Agata F, Geminiani G, et al. Disrupted intrinsic functional connectivity in the ­vegetative state. J Neurol Neurosurg Psychiatry. 2009;80(4):429–31.

    Article  PubMed  CAS  Google Scholar 

  108. Smith DH, Meaney DF, Shull WH. Diffuse axonal injury in head trauma. J Head Trauma Rehabil. 2003;18(4):307–16.

    Article  PubMed  Google Scholar 

  109. McAllister TW, Saykin AJ, Flashman LA, Sparling MB, Johnson SC, Guerin SJ, et al. Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology. 1999;53(6):1300–8.

    PubMed  CAS  Google Scholar 

  110. McAllister TW, Sparling MB, Flashman LA, Guerin SJ, Mamourian AC, Saykin AJ. Differential working memory load effects after mild traumatic brain injury. Neuroimage. 2001;14(5):1004–12.

    Article  PubMed  CAS  Google Scholar 

  111. Christodoulou C, DeLuca J, Ricker JH, Madigan NK, Bly BM, Lange G, et al. Functional magnetic resonance imaging of working memory impairment after traumatic brain injury. J Neurol Neurosurg Psychiatry. 2001;71(2):161–8.

    Article  PubMed  CAS  Google Scholar 

  112. Mani TM, Miller LS, Yanasak N, Macciocchi S. Evaluation of changes in motor and visual functional activation over time following moderate-to-severe brain injury. Brain Inj. 2007;21(11):1155–63.

    Article  PubMed  Google Scholar 

  113. Anderson CV, Wood DM, Bigler ED, Blatter DD. Lesion volume, injury severity, and thalamic integrity following head injury. J Neurotrauma. 1996;13(2):59–65.

    Article  PubMed  CAS  Google Scholar 

  114. Schroeter M, Ettrich B, Menz M, Zysset S. Traumatic brain injury affects the frontomedian cortex: an event-related fMRI study on evaluative judgments. Neuropsychologia. 2009;48(1):185–93.

    Article  Google Scholar 

  115. Mao H, Polensek SH, Goldstein FC, Holder CA, Ni C. Diffusion tensor and functional magnetic resonance imaging of diffuse axonal injury and resulting language impairment. J Neuroimaging: Off J Am Soc Neuroimaging. 2007;17(4):292–4.

    Google Scholar 

  116. Kim DG, Kim SH, Kim OL, Cho YW, Son SM, Jang SH. Long-term recovery of motor function in a quadriplegic patient with diffuse axonal injury and traumatic hemorrhage: a case report. NeuroRehabilitation. 2009;25(2):117–22.

    PubMed  Google Scholar 

  117. Kramer ME, Chiu C-YP, Walz NC, Holland SK, Yuan W, Karunanayaka P, et al. Long-term neural processing of attention following early childhood traumatic brain injury: fMRI and neurobehavioral outcomes. J Int Neuropsychol Soc. 2008;14(3):424–35.

    Article  PubMed  Google Scholar 

  118. Karunanayaka PR, Holland SK, Yuan W, Altaye M, Jones BV, Michaud LJ, et al. Neural substrate differences in language networks and associated language-related behavioral impairments in children with TBI: a preliminary fMRI investigation. NeuroRehabilitation. 2007;22(5):355–69.

    PubMed  Google Scholar 

  119. Caeyenberghs K, Wenderoth N, Smits-Engelsman BCM, Sunaert S, Swinnen SP. Neural correlates of motor dysfunction in children with traumatic brain injury: exploration of compensatory recruitment patterns. Brain. 2009;132(Pt 3):684–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01 NS039135-09 and American Recovery & Reinvestment Act (ARRA) NS039135-08 S1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matilde Inglese MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Inglese, M., Raz, E. (2011). Functional Neuroradiology of Traumatic Brain Injury. In: Faro, S., Mohamed, F., Law, M., Ulmer, J. (eds) Functional Neuroradiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0345-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0345-7_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0343-3

  • Online ISBN: 978-1-4419-0345-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics