Skip to main content

Physical Principles of Diffusion Imaging

  • Chapter
  • First Online:
Functional Neuroradiology

Abstract

Diffusion-weighted imaging (DWI) utilizes the constant random motion of water molecules, called Brownian motion, to depict the movement or diffusion of water in tissue structures. The diffusion of water molecules in the brain provides us with a sensitive window to its underlying physiology and structure. DWI of the brain was introduced into clinical use in the early 1990s, primarily in the detection of acute ischemic stroke. Since that time, advances in technology have resulted in significant improvements in image quality, allowing the application of DWI to the evaluation of a variety of intracranial disease processes, such as infections, neoplasms, demyelinating processes, and trauma. In this chapter, we review the physical principles of DWI, starting with a description of Brownian motion and its relevance to molecular diffusion. We then describe the application of these principles to DWI of the brain using magnetic resonance imaging (MRI). We discuss basic imaging techniques in DWI of the brain, as well as limitations of current techniques, and newer imaging sequences that have been developed. The clinical applications of DWI are discussed in the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moseley ME, Cohen Y, Mintorovitch J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. 1990;14:330–46.

    Article  PubMed  CAS  Google Scholar 

  2. Chien D, Kwong KK, Gress DR, et al. MR diffusion imaging of cerebral infarction in humans. AJNR Am J Neuroradiol. 1992;13:1097–102.

    PubMed  CAS  Google Scholar 

  3. Warach S, Chien D, Li W, et al. Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology. 1992;42:1717–23.

    PubMed  CAS  Google Scholar 

  4. van Everdingen KJ, van der Grong J, Kappelle LJ, Ramos LM, Mali WP. Diffusion-weighted magnetic resonance imaging in acute stroke. Stroke. 1998;29(9):1783–90.

    Article  PubMed  Google Scholar 

  5. Brown R. A brief account of microscopical observations made in the months of June, July and August 1827 on the particles contained in the pollen of plants, and on the general existence of active molecules in organic and inorganic bodies. Philosophical Magazine. 1828;4:161.

    Google Scholar 

  6. Einstein A. In: Furthe R, Cowper AD, editors. Investigations on the Theory of Brownian Motion. New York: Dover; 1956. (Collection of papers translated from German, first published in 1905).

    Google Scholar 

  7. Jones DK. Studying connections in the living human brain with diffusion MRI. Cortex. 2008;44(8):936–52.

    Article  PubMed  Google Scholar 

  8. Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R. Understanding diffusion MR imaging techniques: from scalar ­diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics. 2006;26 Suppl 1:S205–23.

    Article  PubMed  Google Scholar 

  9. Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology. 2000;217(2):331–45.

    PubMed  CAS  Google Scholar 

  10. Pierpaoli C, Jezzard P, Basser PJ, et al. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201:637–48.

    PubMed  CAS  Google Scholar 

  11. Bloch F. Nuclear induction. Phys Rev. 1946;70:460–74.

    Article  CAS  Google Scholar 

  12. Bloch F, Hansen WW, Packard M. Nuclear induction. Phys Rev. 1946;69:127.

    Article  Google Scholar 

  13. Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev. 1946;69:37.

    Article  CAS  Google Scholar 

  14. Hahn EL. Spin echoes. Phys Rev. 1950;80:580–94.

    Article  Google Scholar 

  15. Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 1954;94:630–8.

    Article  CAS  Google Scholar 

  16. Torrey HC. Bloch equations with diffusion terms. Phys Rev. 1956;104:563–5.

    Article  Google Scholar 

  17. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288–92.

    Article  CAS  Google Scholar 

  18. Mori S, Barker PB. Diffusion magnetic resonance imaging: its principle and applications. Anat Rec. 1999;257(3):102–9.

    Article  PubMed  CAS  Google Scholar 

  19. Sevick RJ, Kanda F, Mintorovitch J, et al. Cytotoxic brain edema: assessment with diffusion-weighted MR imaging. Radiology. 1992;185(3):687–90.

    PubMed  CAS  Google Scholar 

  20. Ebisu T, Naruse S, Horikawa Y, et al. Discrimination between different types of white matter edema with diffusion-weighted MR imaging. J Magn Reson Imaging. 1993;3:863–8.

    Article  PubMed  CAS  Google Scholar 

  21. Schaefer PW, Buonanno FS, Gonzalez RG, et al. Diffusion-weighted imaging discriminates between cytotoxic and vasogenic edema in a patient with eclampsia. Stroke. 1997;28:1082–5.

    Article  PubMed  CAS  Google Scholar 

  22. Schwartz R, Mulkern R, Gudbjartsson H, et al. Diffusion-weighted MR imaging in hypertensive encephalopathy: clues to pathogenesis. AJNR Am J Neuroradiol. 1998;19:859–62.

    PubMed  CAS  Google Scholar 

  23. Ay H, Buonanno FS, Schaefer PW, et al. Posterior leukoencephalopathy without severe hypertension: utility of diffusion-weighted MRI. Neurology. 1998;51:1369–76.

    PubMed  CAS  Google Scholar 

  24. Mukherjee P, McKinstry RC. Reversible posterior leukoencephalopathy syndrome: evaluation with diffusion-tensor MR imaging. Radiology. 2001;219:756–65.

    PubMed  CAS  Google Scholar 

  25. Provenzale JM, Petrella JR, Cruz Jr LCH, et al. Quantitative assessment of diffusion abnormalities in posterior reversible encephalo­pathy syndrome. AJNR Am J Neuroradiol. 2001;22:1455–61.

    PubMed  CAS  Google Scholar 

  26. Chen PE, Simon JE, Hill MD, et al. Acute ischemic stroke: accuracy of diffusion-weighted MR imaging – effects of b value and cerebrospinal fluid suppression. Radiology. 2006;238(1):232–9.

    Article  PubMed  Google Scholar 

  27. Kim HJ, Choi CG, Lee DH, Lee JH, Kim SJ, Suh DC. High-b-value diffusion-weighted MR imaging of hyperacute ischemic stroke at 1.5T. AJNR Am J Neuroradiol. 2005;26(2):208–15.

    PubMed  Google Scholar 

  28. Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci. 2003;4(6):469–80.

    Article  PubMed  Google Scholar 

  29. Cleveland GG, Chang DC, Hazlewood CF, Rorschach HE. Nuclear magnetic resonance measurement of skeletal muscle: anisotrophy of the diffusion coefficient of the intracellular water. Biophys J. 1976;16(9):1043–53.

    Article  PubMed  CAS  Google Scholar 

  30. Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology. 1990;176(2):439–45.

    PubMed  CAS  Google Scholar 

  31. Moseley ME, Kucharczyk J, Asgari HS, Norman D. Anisotropy in diffusion-weighted MRI. Magn Reson Med. 1991;19(2):321–6.

    Article  PubMed  CAS  Google Scholar 

  32. Doran M, Hajnal JV, Van Bruggen N, King MD, Young IR, Bydder GM. Normal and abnormal white matter tracts shown by MR imaging using directional diffusion weighted sequences. J Comput Assist Tomogr. 1990;14(6):865–73.

    Article  PubMed  CAS  Google Scholar 

  33. Chenevert TL, Brunberg JA, Pipe JG. Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology. 1990;177(2):401–5.

    PubMed  CAS  Google Scholar 

  34. Thomsen C, Henriksen O, Ring P. In vivo measurement of water self diffusion in the human brain by magnetic resonance imaging. Acta Radiol. 1987;28(3):353–61.

    Article  PubMed  CAS  Google Scholar 

  35. Hong X, Dixon WT. Measuring diffusion in inhomogeneous systems in imaging mode using antisymmetric sensitizing gradients. J Magn Reson. 1992;99:561–70.

    CAS  Google Scholar 

  36. Lian J, Williams DS, Lowe IJ. Magnetic resonance imaging in the presence of background gradients and imaging of background ­gradients. J Magn Reson Series A. 1994;106:65–74.

    Article  CAS  Google Scholar 

  37. Wimberger DM, Roberts TP, Barkovich AJ, Prayer LM, Moseley ME, Kucharczyk J. Identification of “premyelination” by diffusion-weighted MRI. J Comput Assist Tomogr. 1995;19(1):28–33.

    Article  PubMed  CAS  Google Scholar 

  38. Prayer D, Roberts T, Barkovich AJ, Prayer L, Kucharczyk J, Moseley M, et al. Diffusion-weighted MRI of myelination in the rat brain following treatment with gonadal hormones. Neuroradiology. 1997;39(5):320–5.

    Article  PubMed  CAS  Google Scholar 

  39. Beaulieu C, Allen PS. Determinants of anisotropic water diffusion in nerves. Magn Reson Med. 1994;31(4):394–400.

    Article  PubMed  CAS  Google Scholar 

  40. Beaulieu C, Allen PS. Water diffusion in the giant axon of the squid: implications for diffusion-weighted MRI of the nervous system. Magn Reson Med. 1994;32(5):579–83.

    Article  PubMed  CAS  Google Scholar 

  41. Beaulieu C, Allen PS. An in vitro evaluation of the effects of local magnetic-susceptibility-induced gradients on anisotropic water ­diffusion in nerve. Magn Reson Med. 1996;36(1):39–44.

    Article  PubMed  CAS  Google Scholar 

  42. Beaulieu C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed. 2002;15(7–8):435–55.

    Article  PubMed  Google Scholar 

  43. Burdette JH, Elster AD, Ricci PE. Acute cerebral infarction: quantification of spin-density and T2 shine-through phenomena on ­diffusion-weighted MR images. Radiology. 1999;212(2):333–9.

    PubMed  CAS  Google Scholar 

  44. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201(3):637–48.

    PubMed  CAS  Google Scholar 

  45. Hüppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolesz FA, et al. Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res. 1998;44(4):584–90.

    Article  PubMed  Google Scholar 

  46. Neil JJ, Shiran SI, McKinstry RC, Schefft GL, Snyder AZ, Almli CR, et al. Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology. 1998;209(1):57–66.

    PubMed  CAS  Google Scholar 

  47. Mukherjee P, Miller JH, Shimony JS, Conturo TE, Lee BC, Almli CR, et al. Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology. 2001;221(2):349–58.

    Article  PubMed  CAS  Google Scholar 

  48. Mukherjee P, McKinstry RC. Diffusion tensor imaging and tracto­graphy of human brain development. Neuroimaging Clin N Am. 2006;16(1):19–43. vii.

    Article  PubMed  Google Scholar 

  49. Mukherjee P, Miller JH, Shimony JS, Philip JV, Nehra D, Snyder AZ, et al. Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am J Neuroradiol. 2002;23(9):1445–56.

    PubMed  Google Scholar 

  50. McGraw P, Liang L, Provenzale JM. Evaluation of normal age-related changes in anisotropy during infancy and childhood as shown by diffusion tensor imaging. AJR Am J Roentgenol. 2002;179(6):1515–22.

    PubMed  Google Scholar 

  51. Schneider JF, Il’yasov KA, Hennig J, Martin E. Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology. 2004;46(4):258–66.

    Article  PubMed  CAS  Google Scholar 

  52. Snook L, Paulson LA, Roy D, Phillips L, Beaulieu C. Diffusion tensor imaging of neurodevelopment in children and young adults. Neuroimage. 2005;26(4):1164–73.

    Article  PubMed  Google Scholar 

  53. Hermoye L, Saint-Martin C, Cosnard G, Lee SK, Kim J, Nassogne MC, et al. Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. Neuroimage. 2006;29(2):493–504.

    Article  PubMed  Google Scholar 

  54. Gideon P, Thomsen C, Henriksen O. Increased self-diffusion of brain water in normal aging. J Magn Reson Imaging. 1994;4(2):185–8.

    Article  PubMed  CAS  Google Scholar 

  55. Chun T, Filippi CG, Zimmerman RD, Uluğ AM. Diffusion changes in the aging human brain. AJNR Am J Neuroradiol. 2000;21(6):1078–83.

    PubMed  CAS  Google Scholar 

  56. Engelter ST, Provenzale JM, Petrella JR, et al. The effect of aging on the apparent diffusion coefficient of normal appearing white matter. AJR Am J Roentgenol. 2000;175:425–30.

    PubMed  CAS  Google Scholar 

  57. Chen ZG, Li TQ, Hindmarsh T. Diffusion tensor trace mapping in normal adult brain using single-shot EPI technique. A methodological study of the aging brain. Acta Radiol. 2001;42(5):447–58.

    PubMed  CAS  Google Scholar 

  58. Nusbaum AO, Tang CY, Buchsbaum MS, Wei TC, Atlas SW. Regional and global changes in cerebral diffusion with normal aging. AJNR Am J Neuroradiol. 2001;22(1):136–42.

    PubMed  CAS  Google Scholar 

  59. Moseley M. Diffusion tensor imaging and aging – a review. NMR Biomed. 2002;15(7–8):553–60.

    Article  PubMed  Google Scholar 

  60. Le Bihan D, Poupon C, Amadon A, Lethimonnier F. Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging. 2006;24(3):478–88.

    Article  PubMed  Google Scholar 

  61. Mukherjee P, Chung SW, Berman JI, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: technical considerations. AJNR Am J Neuroradiol. 2008;29(5):843–52.

    Article  PubMed  CAS  Google Scholar 

  62. Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol. 2003;45(3):169–84.

    Article  PubMed  Google Scholar 

  63. Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol. 2008;29(4):632–41. Epub 2008 Mar 13. Review.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thinesh Sivapatham MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sivapatham, T., Melhem, E.R. (2011). Physical Principles of Diffusion Imaging. In: Faro, S., Mohamed, F., Law, M., Ulmer, J. (eds) Functional Neuroradiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0345-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0345-7_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0343-3

  • Online ISBN: 978-1-4419-0345-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics