Skip to main content

Regulation of Dopamine Release by Striatal Acetylcholine and Nicotine Is via Distinct Nicotinic Acetylcholine Receptors in Dorsal vs. Ventral Striatum

  • Conference paper
  • First Online:
Book cover The Basal Ganglia IX

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 58))

  • 1001 Accesses

Abstract

Striatal dopamine (DA) neurotransmission plays a fundamental role in the reinforcing and ultimately addictive effects of nicotine. Both nicotine and endogenous acetylcholine (ACh) regulate striatal DA release via β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) on striatal axons. The subfamily of β2*-nAChRs responsible for these potent synaptic effects could offer a molecular target for therapeutic strategies in nicotine addiction. We explored the role of the α6β2*-nAChRs in the nucleus accumbens (NAc) and caudate-putamen (CPu) by observing action potential-dependent DA release from synapses in real time using fast-scan cyclic voltammetry at carbon-fibre microelectrodes in mouse striatal slices. We show that α6β2*-nAChRs dominate in the control of DA release by ACh and nicotine in NAc but have a more minor role in CPu alongside other β2*-nAChRs (e.g. α4*). These data offer new insights to suggest striatal α6*-nAChRs as a molecular target for a therapeutic strategy for nicotine addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aosaki T, Tsubokawa H, Ishida A, Watanabe K, Graybiel AM and Kimura M (1994) Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning. J Neurosci 14: 3969–3984.

    CAS  PubMed  Google Scholar 

  • Avshalumov MV, Chen BT, Marshall SP, Pena DM and Rice ME (2003) Glutamate-dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2. J Neurosci 23: 2744–2750.

    CAS  PubMed  Google Scholar 

  • Azam L, Winzer-Serhan UH, Chen Y and Leslie FM (2002) Expression of neuronal nicotinic acetylcholine receptor subunit mRNAs within midbrain dopamine neurons. J Comp Neurol 444: 260–274.

    Article  CAS  PubMed  Google Scholar 

  • Azam L, Chen Y and Leslie FM (2007) Developmental regulation of nicotinic acetylcholine receptors within midbrain dopamine neurons. Neuroscience 144: 1347–1360.

    Article  CAS  PubMed  Google Scholar 

  • Bayer HM and Glimcher PW (2005) Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47: 129–141.

    Article  CAS  PubMed  Google Scholar 

  • Bennett BD and Wilson CJ (1999) Spontaneous activity of neostriatal cholinergic interneurons in vitro. J Neurosci 19: 5586–5596.

    CAS  PubMed  Google Scholar 

  • Champtiaux N, Han ZY, Bessis A, Rossi FM, Zoli M, Marubio L, McIntosh JM and Changeux JP (2002) Distribution and pharmacology of alpha 6-containing nicotinic acetylcholine receptors analyzed with mutant mice. J Neurosci 22: 1208–1217.

    CAS  PubMed  Google Scholar 

  • Champtiaux N, Gotti C, Cordero-Erausquin M, David DJ, Przybylski C, Lena C, Clementi F, Moretti M, Rossi FM, Le Novere N, McIntosh JM, Gardier AM and Changeux JP (2003) Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci 23: 7820–7829.

    CAS  PubMed  Google Scholar 

  • Charpantier E, Barneoud P, Moser P, Besnard F and Sgard F (1998) Nicotinic acetylcholine subunit mRNA expression in dopaminergic neurons of the rat substantia nigra and ventral tegmental area. Neuroreport 9: 3097–3101.

    Article  CAS  PubMed  Google Scholar 

  • Contant C, Umbriaco D, Garcia S, Watkins KC and Descarries L (1996) Ultrastructural characterization of the acetylcholine innervation in adult rat neostriatum. Neuroscience 71: 937–947.

    Article  CAS  PubMed  Google Scholar 

  • Corrigall WA, Franklin KB, Coen KM and Clarke PB (1992) The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology 107: 285–289.

    Article  CAS  PubMed  Google Scholar 

  • Cragg SJ (2003) Variable dopamine release probability and short-term plasticity between functional domains of the primate striatum. J Neurosci 23: 4378–4385.

    CAS  PubMed  Google Scholar 

  • Cragg SJ (2006) Meaningful silences: how dopamine listens to the ACh pause. Trends Neurosci 29: 125–131.

    Article  CAS  PubMed  Google Scholar 

  • Cragg SJ and Greenfield SA (1997) Differential autoreceptor control of somatodendritic and axon terminal dopamine release in substantia nigra, ventral tegmental area, and striatum. J Neurosci 17: 5738–5746.

    CAS  PubMed  Google Scholar 

  • Cui C, Booker TK, Allen RS, Grady SR, Whiteaker P, Marks MJ, Salminen O, Tritto T, Butt CM, Allen WR, Stitzel JA, McIntosh JM, Boulter J, Collins AC and Heinemann SF (2003) The beta3 nicotinic receptor subunit: a component of alpha-conotoxin MII-binding nicotinic acetylcholine receptors that modulate dopamine release and related behaviors. J Neurosci 23: 11045–11053.

    CAS  PubMed  Google Scholar 

  • Descarries L and Mechawar N (2000) Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog Brain Res 125: 27–47.

    Article  CAS  PubMed  Google Scholar 

  • Exley R and Cragg SJ (2008) Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. Br J Pharmacol 153 Suppl 1: S283–S297.

    CAS  PubMed  Google Scholar 

  • Exley R, Clements MA, Hartung H, McIntosh JM and Cragg SJ (2008) Alpha6-containing nicotinic acetylcholine receptors dominate the nicotine control of dopamine neurotransmission in nucleus accumbens. Neuropsychopharmacology 33: 2158–2166.

    Article  CAS  PubMed  Google Scholar 

  • Grady SR, Murphy KL, Cao J, Marks MJ, McIntosh JM and Collins AC (2002) Characterization of nicotinic agonist-induced [(3)H]dopamine release from synaptosomes prepared from four mouse brain regions. J Pharmacol Exp Ther 301: 651–660.

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM, Baughman RW and Eckenstein F (1986) Cholinergic neuropil of the striatum observes striosomal boundaries. Nature 323: 625–627.

    Article  CAS  PubMed  Google Scholar 

  • Grenhoff J, Aston-Jones G and Svensson TH (1986) Nicotinic effects on the firing pattern of midbrain dopamine neurons. Acta Physiol Scand 128: 351–358.

    Article  CAS  PubMed  Google Scholar 

  • Holt DJ, Graybiel AM and Saper CB (1997) Neurochemical architecture of the human striatum. J Comp Neurol 384: 1–25.

    Article  CAS  PubMed  Google Scholar 

  • Hyland BI, Reynolds JN, Hay J, Perk CG and Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114: 475–492.

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa J, Dai J, O’Laughlin IA, Fowler WL and Meltzer HY (2002) Atypical, but not typical, antipsychotic drugs increase cortical acetylcholine release without an effect in the nucleus accumbens or striatum. Neuropsychopharmacology 26: 325–339.

    Article  CAS  PubMed  Google Scholar 

  • Imperato A, Mulas A and Di Chiara G (1986) Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. Eur J Pharmacol 132: 337–338.

    Article  CAS  PubMed  Google Scholar 

  • Kaiser SA, Soliakov L, Harvey SC, Luetje CW and Wonnacott S (1998) Differential inhibition by alpha-conotoxin-MII of the nicotinic stimulation of [3H]dopamine release from rat striatal synaptosomes and slices. J Neurochem 70: 1069–1076.

    Article  CAS  PubMed  Google Scholar 

  • Klink R, de Kerchove d’Exaerde A, Zoli M and Changeux JP (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 21: 1452–1463.

    CAS  PubMed  Google Scholar 

  • Kulak JM, Nguyen TA, Olivera BM and McIntosh JM (1997) Alpha-conotoxin MII blocks nicotine-stimulated dopamine release in rat striatal synaptosomes. J Neurosci 17: 5263–5270.

    CAS  PubMed  Google Scholar 

  • Le Novere N, Zoli M and Changeux JP (1996) Neuronal nicotinic receptor alpha 6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain. Eur J Neurosci 8: 2428–2439.

    Article  PubMed  Google Scholar 

  • Mansvelder HD, Keath JR and McGehee DS (2002) Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 33: 905–919.

    Article  CAS  PubMed  Google Scholar 

  • Morris G, Arkadir D, Nevet A, Vaadia E and Bergman H (2004) Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron 43: 133–143.

    Article  CAS  PubMed  Google Scholar 

  • Nicke A, Wonnacott S and Lewis RJ (2004) Alpha-conotoxins as tools for the elucidation of structure and function of neuronal nicotinic acetylcholine receptor subtypes. Eur J Biochem 271: 2305–2319.

    Article  CAS  PubMed  Google Scholar 

  • Nisell M, Nomikos GG and Svensson TH (1994) Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse 16: 36–44.

    Article  CAS  PubMed  Google Scholar 

  • Parada MA, Hernandez L, Puig de Parada M, Rada P and Murzi E (1997) Selective action of acute systemic clozapine on acetylcholine release in the rat prefrontal cortex by reference to the nucleus accumbens and striatum. J Pharmacol Exp Ther 281: 582–588.

    CAS  PubMed  Google Scholar 

  • Phelps PE and Vaughn JE (1986) Immunocytochemical localization of choline acetyltransferase in rat ventral striatum: a light and electron microscopic study. J Neurocytol 15: 595–617.

    Article  CAS  PubMed  Google Scholar 

  • Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM, Fuxe K and Changeux JP (1998) Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391: 173–177.

    Article  CAS  PubMed  Google Scholar 

  • Pidoplichko VI, DeBiasi M, Williams JT and Dani JA (1997) Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390: 401–404.

    Article  CAS  PubMed  Google Scholar 

  • Quik M and McIntosh JM (2006) Striatal α6* nicotinic acetylcholine receptors: potential targets for Parkinson’s disease therapy. J Pharmacol Exp Ther 316: 481–489.

    Article  CAS  PubMed  Google Scholar 

  • Quik M, Polonskaya Y, Kulak JM and McIntosh JM (2001) Vulnerability of 125I-α-conotoxin MII binding sites to nigrostriatal damage in monkey. J Neurosci 21: 5494–5500.

    CAS  PubMed  Google Scholar 

  • Quik M, Polonskaya Y, McIntosh JM and Kulak JM (2002) Differential nicotinic receptor expression in monkey basal ganglia: effects of nigrostriatal damage. Neuroscience 112: 619–630.

    Article  CAS  PubMed  Google Scholar 

  • Quik M, Vailati S, Bordia T, Kulak JM, Fan H, McIntosh JM, Clementi F and Gotti C (2005) Subunit composition of nicotinic receptors in monkey striatum: effect of treatments with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine or l-DOPA. Mol Pharmacol 67: 32–41.

    Article  CAS  PubMed  Google Scholar 

  • Rice ME and Cragg SJ (2004) Nicotine amplifies reward-related dopamine signals in striatum. Nat Neurosci 7: 583–584.

    Article  CAS  PubMed  Google Scholar 

  • Salminen O, Murphy KL, McIntosh JM, Drago J, Marks MJ, Collins AC and Grady SR (2004) Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Mol Pharmacol 65: 1526–1535.

    Article  CAS  PubMed  Google Scholar 

  • Schilstrom B, Rawal N, Mameli-Engvall M, Nomikos GG and Svensson TH (2003) Dual effects of nicotine on dopamine neurons mediated by different nicotinic receptor subtypes. Int J Neuropsychopharmacol 6: 1–11.

    Article  PubMed  Google Scholar 

  • Schultz W (1986) Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey. J Neurophysiol 56: 1439–1461.

    CAS  PubMed  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36: 241–263.

    Article  CAS  PubMed  Google Scholar 

  • Whiteaker P, McIntosh JM, Luo S, Collins AC and Marks MJ (2000) 125I-α-conotoxin MII identifies a novel nicotinic acetylcholine receptor population in mouse brain. Mol Pharmacol 57: 913–925.

    CAS  PubMed  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5: 483–494.

    Article  CAS  PubMed  Google Scholar 

  • Zahm DS and Brog JS (1992) On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 50: 751–767.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H and Sulzer D (2004) Frequency-dependent modulation of dopamine release by nicotine. Nat Neurosci 7: 581–582.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhou FM and Dani JA (2004) Cholinergic drugs for Alzheimer’s disease enhance in vitro dopamine release. Mol Pharmacol 66: 538–544.

    Article  CAS  PubMed  Google Scholar 

  • Zhou FM, Liang Y and Dani JA (2001) Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 4: 1224–1229.

    Article  CAS  PubMed  Google Scholar 

  • Zhou FM, Wilson C and Dani JA (2003) Muscarinic and nicotinic cholinergic mechanisms in the mesostriatal dopamine systems. Neuroscientist 9: 23–36.

    Article  CAS  PubMed  Google Scholar 

  • Zoli M, Moretti M, Zanardi A, McIntosh JM, Clementi F and Gotti C (2002) Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J Neurosci 22: 8785–8789.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Parkinson’s Disease Society (UK), MJ Fox Foundation, the Biotechnology and Biological Sciences Research Council (UK), and Eli Lilly UK, the Paton Fellowship (University of Oxford).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Exley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Exley, R., Clements, M.A., Cragg, S.J. (2009). Regulation of Dopamine Release by Striatal Acetylcholine and Nicotine Is via Distinct Nicotinic Acetylcholine Receptors in Dorsal vs. Ventral Striatum. In: Groenewegen, H., Voorn, P., Berendse, H., Mulder, A., Cools, A. (eds) The Basal Ganglia IX. Advances in Behavioral Biology, vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0340-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0340-2_25

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0339-6

  • Online ISBN: 978-1-4419-0340-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics