Skip to main content

On the Relationships Between the Pedunculopontine Tegmental Nucleus, Corticostriatal Architecture, and the Medial Reticular Formation

  • Conference paper
  • First Online:
The Basal Ganglia IX

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 58))

Abstract

Recent studies have established that the pedunculopontine tegmental nucleus (PPTg) is integrated into corticostriatal looped architecture through connections that include established basal ganglia output nuclei (pallidum, subthalamus and substantia nigra pars reticulata), thalamus and midbrain dopamine (DA) containing neurons in both the ventral tegmental area (VTA) and substantia nigra pars compacta (SNC). It is becoming apparent that the PPTg can be functionally dissociated internally. A simple dissociation is between posterior and anterior PPTg. The posterior PPTg contains a large proportion of cholinergic neurons, has polymodal sensory input that triggers very fast neuronal activity and projects preferentially to the VTA. In contrast, the anterior PPTg contains fewer cholinergic neurons, receives outflow from both corticostriatal systems and the extended amygdala and projects to the SNC. We suggest that this organization maps on to the spiral corticostriatal architecture such that the posterior PPTg interacts with ventromedial striatal systems (a proposed function of which is to integrate incentive salient stimuli to shape flexible goal-directed actions), whereas the anterior PPTg interacts with dorsolateral striatal circuits (which are thought to mediate the learning and execution of stimulus–response associations and the formation of habits). By these interactions, the PPTg en masse contributes to high-order decision making processes that shape action selection. In addition to this we also suggest that the PPTg integrates with medial reticular formation systems that operate as an immediate low-level action selection mechanism. We hypothesize that the PPTg has a pivotal position, bridging between higher order action selection mechanisms dealing with flexible learning of novel action patterns and lower level action selection processes that permit very fast responding to imperative stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainge JA, Jenkins TA and Winn P (2004) Induction of c-fos in specific thalamic nuclei following stimulation of the pedunculopontine tegmental nucleus. Eur J Neurosci 20: 1827–1837.

    Article  PubMed  Google Scholar 

  • Alderson HL, Parkinson JA, Robbins TW and Everitt BJ (2001) The effects of excitotoxic lesions of the nucleus accumbens core or shell regions on intravenous heroin self-administration in rats. Psychopharmacology (Berl) 153: 455–463.

    Article  CAS  Google Scholar 

  • Alderson HL, Latimer MP, Blaha CD, Phillips AG and Winn P (2004) An examination of d-amphetamine self-administration in pedunculopontine tegmental nucleus-lesioned rats. Neuroscience 125: 349–358.

    Article  CAS  PubMed  Google Scholar 

  • Alderson HL, Latimer MP and Winn P (2006) Intravenous self-administration of nicotine is altered by lesions of the posterior, but not anterior, pedunculopontine tegmental nucleus. Eur J Neurosci 23: 2169–2175.

    Article  PubMed  Google Scholar 

  • Alderson HL, Latimer MP and Winn P (2008) A functional dissociation of the anterior and posterior pedunculopontine tegmental nucleus: Excitotoxic lesions have differential effects on locomotion and the response to nicotine. Brain Struct Funct 213: 247–253.

    Article  CAS  PubMed  Google Scholar 

  • Atallah HE, Lopez-Paniagua D, Rudy JW and O’Reilly RC (2007) Separate neural substrates for skill learning and performance in the ventral and dorsal striatum. Nat Neurosci 10:126–131.

    Article  CAS  PubMed  Google Scholar 

  • Balleine B and Killcross S (1994) Effects of ibotenic acid lesions of the nucleus accumbens on instrumental action. Behav Brain Res 65: 181–193.

    Article  CAS  PubMed  Google Scholar 

  • Belin D and Everitt BJ (2008) Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57: 432–441.

    Article  CAS  PubMed  Google Scholar 

  • Berridge KC (2003) Pleasures of the brain. Brain Cogn 52: 106–128.

    Article  PubMed  Google Scholar 

  • Berridge KC and Robinson TE (1998) What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28: 309–369.

    Article  CAS  PubMed  Google Scholar 

  • Bowman EM, Aigner TG and Richmond BJ (1996) Neural signals in the monkey ventral striatum related to motivation for juice and cocaine rewards. J Neurophysiol 75: 1061–1073.

    CAS  PubMed  Google Scholar 

  • Cardinal RN and Cheung TH (2005) Nucleus accumbens core lesions retard instrumental learning and performance with delayed reinforcement in the rat. BMC Neurosci 6: 9.

    Article  PubMed  Google Scholar 

  • Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW and Everitt, BJ (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292: 2499–2501.

    Article  CAS  PubMed  Google Scholar 

  • Clarke NP, Bevan MD, Cozzari C, Hartman BK and Bolam JP (1997) Glutamate-enriched cholinergic synaptic terminals in the entopeduncular nucleus and subthalamic nucleus of the rat. Neuroscience 81: 371–385.

    Article  CAS  PubMed  Google Scholar 

  • Corbit LH, Muir JL and Balleine BW (2001) The role of the nucleus accumbens in instrumental conditioning: Evidence of a functional dissociation between accumbens core and shell. J Neurosci 21: 3251–3260.

    CAS  PubMed  Google Scholar 

  • Corrigall WA, Coen KM and Adamson KL (1994) Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res 653: 279–284.

    Article  Google Scholar 

  • de Borchgrave R, Rawlins JN, Dickinson A and Balleine BW (2002) Effects of cytotoxic nucleus accumbens lesions on instrumental conditioning in rats. Exp Brain Res 144: 50–68.

    Article  PubMed  Google Scholar 

  • Di Ciano P, Robbins TW and Everitt BJ (2008) Differential effects of nucleus accumbens core, shell, or dorsal striatal inactivations on the persistence, reacquisition, or reinstatement of responding for a drug-paired conditioned reinforcer. Neuropsychopharmacology 33: 1413–1425.

    Article  CAS  PubMed  Google Scholar 

  • Dickinson A (1985) Actions and habits: The development of behavioural autonomy. Philos Trans R Soc Lond B Biol Sci 308: 67–78.

    Article  Google Scholar 

  • Dickinson A, Balleine BW, Watt A, Gonzales F and Boakes RA (1995) Overtraining and the motivational control of instrumental action. Anim Learn Behav 22: 197–206.

    Google Scholar 

  • Dormont JF, Conde H and Farin D (1998) The role of the pedunculopontine tegmental nucleus in relation to conditioned motor performance in the cat. I. Context-dependent and reinforcement-related single unit activity. Exp Brain Res 121: 401–410.

    Article  CAS  PubMed  Google Scholar 

  • Erro E, Lanciego JL and Gimenez-Amaya JM (1999) Relationships between thalamostriatal neurons and pedunculopontine projections to the thalamus: A neuroanatomical tract-tracing study in the rat. Exp Brain Res 127: 162–170.

    Article  CAS  PubMed  Google Scholar 

  • Evenden JL and Carli M (1985) The effects of 6-hydroxydopamine lesions of the nucleus accumbens and caudate nucleus of rats on feeding in a novel environment. Behav Brain Res 15: 63–70.

    Article  CAS  PubMed  Google Scholar 

  • Everitt BJ and Robbins TW (2005) Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nat Neurosci 8: 1481–1489.

    Article  CAS  PubMed  Google Scholar 

  • Faure A, Haberland U, Conde F and El Massioui N (2005) Lesion to the nigrostriatal dopamine system disrupts stimulus–response habit formation. J Neurosci 25: 2771–2780.

    Article  CAS  PubMed  Google Scholar 

  • Gillies AJ and Willshaw DJ (1998) A massively connected subthalamic nucleus leads to the generation of widespread pulses. Proc R Soc Lond B 265: 2101–2109.

    Article  CAS  Google Scholar 

  • Grace AA, Floresco SB, Goto Y and Lodge DJ (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30: 220–227.

    Article  CAS  PubMed  Google Scholar 

  • Grillner S, Hellgren J, Menard A, Saitoh K and Wikstrom MA (2005) Mechanisms for selection of basic motor programs – roles for the striatum and pallidum. Trends Neurosci 28: 364–370.

    Article  CAS  PubMed  Google Scholar 

  • Haber SN (2003) The primate basal ganglia: Parallel and integrative networks. J Chem Neuroanat 26: 317–330.

    Article  PubMed  Google Scholar 

  • Hall J, Parkinson JA, Connor TM, Dickinson A and Everitt BJ (2001) Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating pavlovian influences on instrumental behaviour. Eur J Neurosci 13: 1984–1992.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez PJ, Sadeghian K and Kelley AE (2002) Early consolidation of instrumental learning requires protein synthesis in the nucleus accumbens. Nat Neurosci 5: 1327–1331.

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka O (1998) Neural systems for control of voluntary action – a hypothesis. Adv Biophys 35: 81–102.

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka O (2007) GABAergic output of the basal ganglia. Prog Brain Res 160: 209–226.

    Article  CAS  PubMed  Google Scholar 

  • Humphries MD, Gurney K and Prescott TJ (2007) Is there a brainstem substrate for action selection? Philos Trans R Soc Lond B Biol Sci 362: 1627–1639.

    Article  CAS  PubMed  Google Scholar 

  • Hutcheson DM, Parkinson JA, Robbins TW and Everitt BJ (2001) The effects of nucleus accumbens core and shell lesions on intravenous heroin self-administration and the acquisition of drug-seeking behaviour under a second-order schedule of heroin reinforcement. Psychopharmacology 153: 464–472.

    Article  CAS  PubMed  Google Scholar 

  • Ikemoto S (2007) Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex. Brain Res Rev 56: 27–78.

    Article  CAS  PubMed  Google Scholar 

  • Ito R, Robbins TW and Everitt BJ (2004) Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat Neurosci 7: 389–397.

    Article  CAS  PubMed  Google Scholar 

  • Joel D and Weiner I (2000) The connections of the dopaminergic system with the striatum in rats and primates: An analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96: 451–474.

    Article  CAS  PubMed  Google Scholar 

  • Keating GL and Winn P (2002) Examination of the role of the pedunculopontine tegmental nucleus in radial maze tasks with or without a delay. Neuroscience 112: 687–696.

    Article  CAS  PubMed  Google Scholar 

  • Koch M (1999) The neurobiology of startle. Prog Neurobiol 59: 107–128.

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Kungel M and Herbert H (1993) Cholinergic neurons in the pedunculopontine tegmental nucleus are involved in the mediation of prepulse inhibition of the acoustic startle response in the rat. Exp Brain Res 97: 71–82.

    Article  CAS  PubMed  Google Scholar 

  • Lodge DJ and Grace AA (2006) The hippocampus modulates dopamine neuron responsivity by regulating the intensity of phasic neuron activation. Neuropsychopharmacology 31: 1356–1361.

    Article  CAS  PubMed  Google Scholar 

  • Lyon M and Robbins TW (1975) The action of central nervous system stimulant drugs: A general theory concerning amphetamine effects In: Essman W, Valzelli L (eds) Current developments in psychopharmacology. Spectrum, New York, NY.

    Google Scholar 

  • Maskos U (2008) The cholinergic mesopontine tegmentum is a relatively neglected nicotinic master modulator of the dopaminergic system: Relevance to drugs of abuse and pathology. Br J Pharmacol 153(Suppl 1): S438–S445.

    CAS  PubMed  Google Scholar 

  • McHaffie JG, Stanford TR, Stein BE, Coizet V and Redgrave P (2005) Subcortical loops through the basal ganglia. Trends Neurosci 28: 401–407.

    Article  CAS  PubMed  Google Scholar 

  • Mena-Segovia J, Bolam JP and Magill PJ (2004) Pedunculopontine nucleus and basal ganglia: Distant relatives or part of the same family? Trends Neurosci 27: 585–588.

    Article  CAS  PubMed  Google Scholar 

  • Mena-Segovia J, Winn P and Bolam JP (2008) Cholinergic modulation of midbrain dopaminergic systems. Brain Res Rev 58: 265–271.

    Article  CAS  PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ, Wainer BH and Levey AI (1983) Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience 10: 1185–1201.

    Article  CAS  PubMed  Google Scholar 

  • Mink JW (1996) The basal ganglia: Focused selection and inhibition of competing motor programs. Prog Neurobiol 50: 381–425.

    Article  CAS  PubMed  Google Scholar 

  • Nelson A, Killcross S (2006) Amphetamine exposure enhances habit formation. J Neurosci 26: 3805–3812.

    Article  CAS  PubMed  Google Scholar 

  • Oakman SA, Faris PL, Kerr PE, Cozzari C and Hartman BK (1995) Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 15: 5859–5869.

    CAS  PubMed  Google Scholar 

  • Oakman SA, Faris PL, Cozzari C and Hartman BK (1999) Characterization of the extent of ponto-mesencephalic cholinergic neurons’ projections to the thalamus: Comparison with projections to midbrain dopaminergic groups. Neuroscience 94: 529–547.

    Article  CAS  PubMed  Google Scholar 

  • Packard MG and McGaugh JL (1996) Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol Learn Mem 65: 65–72.

    Article  CAS  PubMed  Google Scholar 

  • Pahapill PA and Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123: 1767–1783.

    Article  PubMed  Google Scholar 

  • Pan WX and Hyland BI (2005) Pedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats. J Neurosci 25: 4725–4732.

    Article  CAS  PubMed  Google Scholar 

  • Parent A and Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20: 91–127.

    Article  CAS  PubMed  Google Scholar 

  • Plaha P and Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport 16: 1883–1887.

    Article  PubMed  Google Scholar 

  • Prescott TJ, Redgrave P and Gurney K (1999) Layered control architectures in robots and vertebrates. Adapt Behav 7: 99–127.

    Article  Google Scholar 

  • Reading PJ, Dunnett SB and Robbins TW (1991) Dissociable roles of the ventral, medial and lateral striatum on the acquisition and performance of a complex visual stimulus-response habit. Behav Brain Res 45: 147–161.

    Article  CAS  PubMed  Google Scholar 

  • Redgrave P, Gurney K (2006) The short-latency dopamine signal: A role in discovering novel actions? Nat Rev Neurosci 7: 967–975.

    Article  CAS  PubMed  Google Scholar 

  • Redgrave P, Prescott TJ, Gurney K (1999a) The basal ganglia: A vertebrate solution to the selection problem? Neuroscience 89: 1009–1023.

    Article  CAS  PubMed  Google Scholar 

  • Redgrave P, Prescott TJ and Gurney K (1999b) Is the short-latency dopamine response too short to signal reward error? Trends Neurosci 22: 146–151.

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW and Koob GF (1980) Selective disruption of displacement behaviour by lesions of the mesolimbic dopamine system. Nature 285: 409–412.

    Article  CAS  PubMed  Google Scholar 

  • Salamone JD, Correa M, Mingote S and Weber SM (2003) Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: Implications for studies of natural motivation, psychiatry, and drug abuse. J Pharmacol Exp Ther 305: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Schoenbaum G, Roesch MR and Stalnaker TA (2006) Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci 29: 116–124.

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80: 1–27.

    CAS  PubMed  Google Scholar 

  • Shidara M, Aigner TG and Richmond BJ (1998) Neuronal signals in the monkey ventral striatum related to progress through a predictable series of trials. J Neurosci 18: 2613–2625.

    CAS  PubMed  Google Scholar 

  • Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D, Pierantozzi M, Brusa L, Scarnati E and Mazzone P (2007) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130: 1596–1607.

    Article  PubMed  Google Scholar 

  • Stewart RD and Dommett EJ (2006) Subcortical control of dopamine neurons: The good, the bad and the unexpected. Brain Res Bull 71: 1–3.

    Article  CAS  PubMed  Google Scholar 

  • Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K and Sakamoto T (2003) Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: A new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience 119: 293–308.

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Pawlak AP, Prokopenko V and West MO (2007) Changes in activity of the striatum during formation of a motor habit. Eur J Neurosci 25: 1212–1227.

    Article  PubMed  Google Scholar 

  • Taylor CL, Kozak R, Latimer MP and Winn P (2004) Effects of changing reward on performance of the delayed spatial win-shift radial maze task in pedunculopontine tegmental nucleus lesioned rats. Behav Brain Res 153: 431–438.

    Article  PubMed  Google Scholar 

  • Tobler PN, Fiorillo CD and Schultz W (2005) Adaptive coding of reward value by dopamine neurons. Science 307: 1642–1645.

    Article  CAS  PubMed  Google Scholar 

  • Voorn P, Vanderschuren LJ, Groenewegen HJ, Robbins TW and Pennartz CM (2004) Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 27: 468–474.

    Article  CAS  PubMed  Google Scholar 

  • Walker SC and Winn P (2007) An assessment of the contributions of the pedunculopontine tegmental and cuneiform nuclei to anxiety and neophobia. Neuroscience 150: 273–290.

    Article  CAS  PubMed  Google Scholar 

  • Wickens JR, Horvitz JC, Costa RM and Killcross S (2007) Dopaminergic mechanisms in actions and habits. J Neurosci 27: 8181–8183.

    Article  CAS  PubMed  Google Scholar 

  • Wilson DI and Bowman EM (2004) Nucleus accumbens neurons in the rat exhibit differential activity to conditioned reinforcers and primary reinforcers within a second-order schedule of saccharin reinforcement. Eur J Neurosci 20: 2777–2788.

    Article  PubMed  Google Scholar 

  • Wilson DI and Bowman EM (2005) Rat nucleus accumbens neurons predominantly respond to the outcome-related properties of conditioned stimuli rather than their behavioral-switching properties. J Neurophysiol 94: 49–61.

    Article  PubMed  Google Scholar 

  • Winn P (2006) How best to consider the structure and function of the pedunculopontine tegmental nucleus: Evidence from animal studies. J Neurol Sci 248: 234–250.

    Article  PubMed  Google Scholar 

  • Winn P, Brown VJ and Inglis WL (1997) On the relationships between the striatum and the pedunculopontine tegmental nucleus. Crit Rev Neurobiol 11: 241–261.

    CAS  PubMed  Google Scholar 

  • Yin HH and Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7: 464–476.

    Article  CAS  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ and Balleine BW (2004) Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19: 181–189.

    Article  PubMed  Google Scholar 

  • Zahm DS, Williams EA, Latimer MP and Winn P (2001) Ventral mesopontine projections of the caudomedial shell of the nucleus accumbens and extended amygdala in the rat: Double dissociation by organization and development. J Comp Neurol 436: 111–125.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

David Wilson and Duncan MacLaren are supported by Wellcome Trust project grant 081128 to PW. We wish to extend our thanks to the editors for their patience and kindness in allowing us extra time in which to complete this essay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Winn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Wilson, D.I.G., MacLaren, D.A.A., Winn, P. (2009). On the Relationships Between the Pedunculopontine Tegmental Nucleus, Corticostriatal Architecture, and the Medial Reticular Formation. In: Groenewegen, H., Voorn, P., Berendse, H., Mulder, A., Cools, A. (eds) The Basal Ganglia IX. Advances in Behavioral Biology, vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0340-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0340-2_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0339-6

  • Online ISBN: 978-1-4419-0340-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics