Skip to main content

Metabolomics in Drug Response and Addiction

  • Chapter
  • First Online:
Addiction Medicine
  • 5237 Accesses

Abstract

Metabolomics together with genomics and proteomics contribute towards a better understanding of biological processes including addiction through a modern integrative approach known as systems biology. The excessive economic and social cost of drug addiction necessitates better understanding of how these drugs function and how they elicit variable response in the human body. Numerous studies involving animals and humans indicate that in addition to environmental factors, various genetic and metabolomic factors working in various signaling and interacting pathways in the brain play critical roles in mechanisms underlying drug addiction. The availability of the complete genome sequences, emergence of latest high throughput technologies and the development of powerful bioinformatics tools and applications allow researcher to seek novel approaches to understand these mechanisms. Several important integrative approaches are discussed in this chapter, for example, construction of biological interaction network and pathways from microarray data and construction of transcription regulatory network including their use in solving drug addiction disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal A, Lynskey MT (2006) The genetic epidemiology of cannabis use, abuse and dependence. Addiction 101(6):801–812

    Article  PubMed  Google Scholar 

  2. Baak JP, Janssen EA, Soreide K et al (2005) Genomics and proteomics – the way forward. Ann Oncol 16(Suppl 2):ii30–44

    Article  PubMed  Google Scholar 

  3. Bansal M, Belcastro V, Ambesi-Impiombato A et al (2007) How to infer gene networks from expression profiles. Mol Syst Biol 3:78

    PubMed  Google Scholar 

  4. Bierut LJ, Dinwiddie SH, Begleiter H et al (1998) Familial transmission of substance dependence: alcohol, marijuana, cocaine, and habitual smoking: a report from the collaborative study on the genetics of alcoholism. Arch Gen Psychiatry 55(11): 982–988

    Article  PubMed  CAS  Google Scholar 

  5. Breiter HC, Gollub RL, Weisskoff RM et al (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19(3):591–611

    Article  PubMed  CAS  Google Scholar 

  6. Calvano SE, Xiao W, Richards DR et al (2005) A network-based analysis of systemic inflammation in humans. Nature 437(7061):1032–1037

    Article  PubMed  CAS  Google Scholar 

  7. CDC (2005) Targeting tobacco use: the nation’s leading cause of death. National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA

    Google Scholar 

  8. Chefer VI, Kieffer BL, Shippenberg TS (2004) Contrasting effects of mu opioid receptor and delta opioid receptor deletion upon the behavioral and neurochemical effects of cocaine. Neuroscience 127(2):497–503

    Article  PubMed  CAS  Google Scholar 

  9. Claudino WM, Quattrone A, Biganzoli L et al (2007) Metabolomics: available results, current research projects in breast cancer, and future applications. J Clin Oncol 25(19):2840–2846

    Article  PubMed  CAS  Google Scholar 

  10. Elkon R, Linhart C, Sharan R et al (2003) Genome-wide in silico identification of transcriptional regulators controlling the cell cycle in human cells. Genome Res 13(5):773–780

    Article  PubMed  CAS  Google Scholar 

  11. Feala JD, Coquin L, Paternostro G et al (2008) Integrating metabolomics and phenomics with systems models of cardiac hypoxia. Prog Biophys Mol Biol 96(1–3):209–225

    Article  PubMed  CAS  Google Scholar 

  12. Feltenstein MW, See RE (2008) The neurocircuitry of addiction: an overview. Br J Pharmacol 154(2):261–274

    Article  PubMed  CAS  Google Scholar 

  13. Fessele S, Maier H, Zischek C et al (2002) Regulatory context is a crucial part of gene function. Trends Genet 18(2):60–63

    Article  PubMed  CAS  Google Scholar 

  14. Flatscher-Bader T, van der Brug MP, Landis N et al (2006) Comparative gene expression in brain regions of human alcoholics. Genes Brain Behav 5(Suppl 1):78–84

    PubMed  CAS  Google Scholar 

  15. Flatscher-Bader T, Zuvela N, Landis N et al (2008) Smoking and alcoholism target genes associated with plasticity and glutamate transmission in the human ventral tegmental area. Hum Mol Genet 17(1):38–51

    Article  PubMed  CAS  Google Scholar 

  16. Gardner TJ, Kosten TR (2007) Therapeutic options and challenges for substances of abuse. Dialogues Clin Neurosci 9(4):431–445

    PubMed  Google Scholar 

  17. German JB, Hammock BD, Watkins SM (2005) Metabolomics: building on a century of biochemistry to guide human health. Metabolomics 1(1):3–9

    Article  PubMed  CAS  Google Scholar 

  18. Gilchrist M, Thorsson V, Li B et al (2006) Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441(7090):173–178

    Article  PubMed  CAS  Google Scholar 

  19. Gomase VS, Changbhale SS, Patil SA et al (2008) Metabolomics. Curr Drug Metab 9(1):89–98

    Article  PubMed  CAS  Google Scholar 

  20. Hamon M, Bourgoin S, Artaud F et al (1981) The respective roles of tryptophan uptake and tryptophan hydroxylase in the regulation of serotonin synthesis in the central nervous system. J Physiol (Paris) 77(2–3):269–279

    CAS  Google Scholar 

  21. Harwood HJ, Fountain D, Fountain G (1999) Economic cost of alcohol and drug abuse in the United States, 1992: a report. Addiction 94(5):631–635

    Article  PubMed  CAS  Google Scholar 

  22. Huang S (2004) Back to the biology in systems biology: what can we learn from biomolecular networks? Brief Funct Genomic Proteomic 2(4):279–297

    Article  PubMed  CAS  Google Scholar 

  23. Kanehisa M, Goto S, Hattori M et al (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34 (Database issue):D354–D357

    Article  PubMed  CAS  Google Scholar 

  24. Kendler KS, Jacobson KC, Prescott CA et al (2003) Specificity of genetic and environmental risk factors for use and abuse/dependence of cannabis, cocaine, hallucinogens, sedatives, stimulants, and opiates in male twins. Am J Psychiatry 160(4):687–695

    Article  PubMed  Google Scholar 

  25. Koob GF (2006) The neurobiology of addiction: a neuroadaptational view relevant for diagnosis. Addiction 101(Suppl 1):23–30

    Article  PubMed  Google Scholar 

  26. Koob GF, Roberts AJ, Schulteis G et al (1998) Neurocircuitry targets in ethanol reward and dependence. Alcohol Clin Exp Res 22(1):3–9

    Article  PubMed  CAS  Google Scholar 

  27. Kreek MJ (2001) Drug addictions. Molecular and cellular endpoints. Ann NY Acad Sci 937:27–49

    Article  PubMed  CAS  Google Scholar 

  28. Kreek MJ, Nielsen DA, LaForge KS (2004) Genes associated with addiction: alcoholism, opiate, and cocaine addiction. Neuromolecular Med 5(1): 85–108

    Article  PubMed  CAS  Google Scholar 

  29. Leshner AI (1997) Addiction is a brain disease, and it matters. Science 278(5335):45–47

    Article  PubMed  CAS  Google Scholar 

  30. Li CY, Mao X, Wei L (2008) Genes and (common) pathways underlying drug addiction. PLoS Comput Biol 4(1):e2

    Article  PubMed  Google Scholar 

  31. Loney KD, Uddin KR, Singh SM (2003) Strain-specific brain metallothionein II (MT-II) gene expression, its ethanol responsiveness, and association with ethanol preference in mice. Alcohol Clin Exp Res 27(3):388–395

    Article  PubMed  CAS  Google Scholar 

  32. Loney KD, Uddin RK, Singh SM (2006) Analysis of metallothionein brain gene expression in relation to ethanol preference in mice using cosegregation and gene knockouts. Alcohol Clin Exp Res 30(1):15–25

    Article  PubMed  CAS  Google Scholar 

  33. Maxwell JC, Rutkowski BA (2008) The prevalence of methamphetamine and amphetamine abuse in North America: a review of the indicators, 1992–2007. Drug Alcohol Rev 27(3):229–235

    Article  PubMed  Google Scholar 

  34. Mayfield RD, Harris RA, Schuckit MA (2008) Genetic factors influencing alcohol dependence. Br J Pharmacol 154(2):275–287

    Article  PubMed  CAS  Google Scholar 

  35. Minozzi S, Amato L, Davoli M et al (2008) Anticonvulsants for cocaine dependence. Cochrane Database Syst Rev (2):CD006754

    Google Scholar 

  36. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11):1181–1189

    Article  PubMed  CAS  Google Scholar 

  37. O’Brien CP (2003) Research advances in the understanding and treatment of addiction. Am J Addict 12(Suppl 2):S36–S47

    PubMed  Google Scholar 

  38. Oscar-Berman M, Marinkovic K (2007) Alcohol: effects on neurobehavioral functions and the brain. Neuropsychol Rev 17(3):239–257

    Article  PubMed  Google Scholar 

  39. Oscar-Berman M, Shagrin B, Evert DL et al (1997) Impairments of brain and behavior: the neurological effects of alcohol. Alcohol Health Res World 21(1):65–75

    PubMed  CAS  Google Scholar 

  40. Oswald LM, Wand GS (2004) Opioids and alcoholism. Physiol Behav 81(2):339–358

    Article  PubMed  CAS  Google Scholar 

  41. Parker AJ, Marshall EJ, Ball DM (2008) Diagnosis and management of alcohol use disorders. BMJ 336(7642):496–501

    Article  PubMed  Google Scholar 

  42. Ron D, Jurd R (2005) The “ups and downs” of signaling cascades in addiction. Sci STKE 2005(309):re14

    Article  PubMed  Google Scholar 

  43. Saito T, Guan F, Papolos DF et al (2001) Mutation analysis of SYNJ1: a possible candidate gene for chromosome 21q22-linked bipolar disorder. Mol Psychiatry 6(4):387–395

    Article  PubMed  CAS  Google Scholar 

  44. Schuckit MA, Li TK, Cloninger CR et al (1985) Genetics of alcoholism. Alcohol Clin Exp Res 9(6):475–492

    Article  PubMed  CAS  Google Scholar 

  45. Segal E, Friedman N, Kaminski N et al (2005) From signatures to models: understanding cancer using microarrays. Nat Genet 37(Suppl):S38–S45

    Article  PubMed  CAS  Google Scholar 

  46. Shi YH, Zhu SW, Mao XZ et al (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18(3):651–664

    Article  PubMed  CAS  Google Scholar 

  47. Singh SM, Treadwell J, Kleiber ML et al (2007) Analysis of behavior using genetical genomics in mice as a model: from alcohol preferences to gene expression differences. Genome 50(10):877–897

    Article  PubMed  CAS  Google Scholar 

  48. Stein EA, Pankiewicz J, Harsch HH et al (1998) Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry 155(8):1009–1015

    PubMed  CAS  Google Scholar 

  49. Sullivan LE, Fiellin DA (2008) Narrative review: buprenorphine for opioid-dependent patients in office practice. Ann Intern Med 148(9):662–670

    PubMed  Google Scholar 

  50. Szumlinski KK, Dehoff MH, Kang SH et al (2004) Homer proteins regulate sensitivity to cocaine. Neuron 43(3):401–413

    Article  PubMed  CAS  Google Scholar 

  51. Tapper AR, McKinney SL, Nashmi R et al (2004) Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization. Science 306(5698):1029–1032

    Article  PubMed  CAS  Google Scholar 

  52. Tegner J, Bjorkegren J (2007) Perturbations to uncover gene networks. Trends Genet 23(1):34–41

    Article  PubMed  CAS  Google Scholar 

  53. Tomlins SA, Mehra R, Rhodes DR et al (2007) Integrative molecular concept modeling of prostate cancer progression. Nat Genet 39(1):41–51

    Article  PubMed  CAS  Google Scholar 

  54. Treadwell JA, Singh SM (2004) Microarray analysis of mouse brain gene expression following acute ethanol treatment. Neurochem Res 29(2):357–369

    Article  PubMed  CAS  Google Scholar 

  55. True WR, Xian H, Scherrer JF et al (1999) Common genetic vulnerability for nicotine and alcohol dependence in men. Arch Gen Psychiatry 56(7):655–661

    Article  PubMed  CAS  Google Scholar 

  56. Tsuang MT, Lyons MJ, Meyer JM et al (1998) Co-occurrence of abuse of different drugs in men: the role of drug-specific and shared vulnerabilities. Arch Gen Psychiatry 55(11):967–972

    Article  PubMed  CAS  Google Scholar 

  57. Tyers M, Mann M (2003) From genomics to proteomics. Nature 422(6928):193–197

    Article  PubMed  CAS  Google Scholar 

  58. Uddin RK, Singh SM (2006) cis-Regulatory sequences of the genes involved in apoptosis, cell growth, and proliferation may provide a target for some of the effects of acute ethanol exposure. Brain Res 1088(1):31–44

    Article  PubMed  CAS  Google Scholar 

  59. Uddin RK, Singh SM (2007) Ethanol-responsive genes: identification of transcription factors and their role in metabolomics. Pharmacogenomics J 7(1):38–47

    Article  PubMed  CAS  Google Scholar 

  60. Uddin RK, Treadwell JA, Singh SM (2005) Towards unraveling ethanol-specific neuro-metabolomics based on ethanol responsive genes in vivo. Neurochem Res 30(9):1179–1190

    Article  PubMed  CAS  Google Scholar 

  61. Verstreken P, Koh TW, Schulze KL et al (2003) Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 40(4):733–748

    Article  PubMed  CAS  Google Scholar 

  62. Volkow ND, Li TK (2005) Drugs and alcohol: treating and preventing abuse, addiction and their medical consequences. Pharmacol Ther 108(1):3–17

    Article  PubMed  CAS  Google Scholar 

  63. Yuferov V, Kroslak T, Laforge KS et al (2003) Differential gene expression in the rat caudate putamen after “binge” cocaine administration: advantage of triplicate microarray analysis. Synapse 48(4):157–169

    Article  PubMed  CAS  Google Scholar 

  64. Zhang D, Zhang L, Lou DW et al (2002) The dopamine D1 receptor is a critical mediator for cocaine-induced gene expression. J Neurochem 82(6):1453–1464

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raihan K. Uddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Uddin, R.K., Singh, S.M. (2010). Metabolomics in Drug Response and Addiction. In: Johnson, B. (eds) Addiction Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0338-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0338-9_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0337-2

  • Online ISBN: 978-1-4419-0338-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics