Skip to main content

The Role of Otx Genes in Progenitor Domains of Ventral Midbrain

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 651))

Abstract

The mesencephalic dopaminergic (mesDA) neurons play a relevant role in the control of movement, behaviour and cognition. Indeed loss and/or abnormal development of mesDA neurons is responsible for Parkinson’s disease as well as for addictive and psychiatric disorders. A wealth of information has been provided on gene functions involved in the molecular mechanism controlling identity, fate and survival of mesDA neurons. Collectively, these studies are contributing to a growing knowledge of the genetic networks required for proper mesDA development, thus disclosing new perspectives for therapeutic approaches of mesDA disorders. Here we will focus on the control exerted by Otx genes in early decisions regulating the differentiation of progenitors located in the ventral midbrain. In this context, the regulatory network involving Otx functional interactions with signalling molecules and transcription factors required to promote or prevent the development of mesDA neurons will be analyzed in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dahlstrom A, Fuxe K. Localization of monoamines in the lower brain stem. Experientia 1964; 20:398–399.

    Article  PubMed  CAS  Google Scholar 

  2. Hökfelt T, Matensson A, Björklund S et al. Distributional maps of tyrosine hydroxylase-immunoreactive neurons in the rat brain. In: Björklund A, Hökfelt T, eds. Handbook of Chemical Neuroanatomy: Classical Transmitters in the CNS. Amsterdam: Elsevier, 1984; 2:227–379.

    Google Scholar 

  3. Björklund A, Lindvall O. Dopamine-contianing systems in the CNS. In: Biörklund A, Hökfelt eds. Handbook of Chemical Neuroanatomy: Classical Transmitters in the CNS. Amsterdam: Elsevier, 1984; 2:55–121.

    Google Scholar 

  4. Jellinger KA. The pathology of parkinson’s disease. Adv Neurol 2001; 86:55–72.

    PubMed  CAS  Google Scholar 

  5. Egan MF, Weinberger DR. Neurobiology of schizophrenia. Curr Opin Neurobiol 1997; 7:701–707.

    Article  PubMed  CAS  Google Scholar 

  6. Klockgether T. Parkinson’s disease: clinical aspects. Cell Tissue Res 2004; 318:115–120.

    Article  PubMed  Google Scholar 

  7. von Bohlen und Halbach O, Schober A, Krieglstein K. Genes, proteins and neurotoxins involved in Parkinson’s disease. Prog Neurobiol 2004; 73:151–177.

    Article  CAS  Google Scholar 

  8. Kelley AE, Berridge KC. The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 2002; 22:3306–3311.

    PubMed  CAS  Google Scholar 

  9. Isacson O. On neuronal health. Trends Neurosci 1993; 16:306–308.

    Article  PubMed  CAS  Google Scholar 

  10. Rubenstein JL, Shimamura K, Martinez S et al. Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 1998; 21:445–477.

    Article  PubMed  CAS  Google Scholar 

  11. Lumsden A, Krumlauf R. Patterning the vertebrate neuraxis. Science 1996; 274:1109–1115.

    Article  PubMed  CAS  Google Scholar 

  12. Wurst W, Bally-Cuif L. Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2001; 2:99–108.

    Article  PubMed  CAS  Google Scholar 

  13. Jessell TM. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 2000; 1:20–29.

    Article  PubMed  CAS  Google Scholar 

  14. Edlund T, Jessell TM. Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell 1999; 96:211–224.

    Article  PubMed  CAS  Google Scholar 

  15. Briscoe J, Ericson J. Specification of neuronal fates in the ventral neural tube. Curr Opin Neurobiol 2001; 11:43–49.

    Article  PubMed  CAS  Google Scholar 

  16. Ye W, Shimamura K, Rubenstein JL et al. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 1998; 93:755–766.

    Article  PubMed  CAS  Google Scholar 

  17. Simeone A. Positioning the isthmic organizer where Otx2 and Gbx2 meet. Trends Genet 2000; 16:237–240.

    Article  PubMed  CAS  Google Scholar 

  18. Prakash N, Wurst W. Development of dopaminergic neurons in the mammalian brain. Cell Mol Life Sci 2006; 63:187–206.

    Article  PubMed  CAS  Google Scholar 

  19. Simeone A. Genetic control of dopaminergic neuron differentiation. Trends Neurosci 2005; 28:62–65; discussion 65–66.

    Article  PubMed  CAS  Google Scholar 

  20. Smidt MP, Asbreuk CH, Cox JJ et al. A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat Neurosci 2000; 3:337–341.

    Article  PubMed  CAS  Google Scholar 

  21. Saucedo-Cardenas O, Quintana-Hau JD, Le WD et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci USA 1998; 95:4013–4018.

    Article  PubMed  CAS  Google Scholar 

  22. Semina EV, Ferrell RE, Mintz-Hittner HA et al. A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat Genet 1998; 19:167–170.

    Article  PubMed  CAS  Google Scholar 

  23. Smidt MP, van Schaick HS, Lanctot C et al. A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci USA 1997; 94:13305–13310.

    Article  PubMed  CAS  Google Scholar 

  24. Smidt MP, Smits SM, Bouwmeester H et al. Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene pitx3. Development 2004; 131:1145–1155.

    Article  PubMed  CAS  Google Scholar 

  25. van den Munckhof P, Luk KC, Ste-Marie L et al. Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 2003; 130:2535–2542.

    Article  PubMed  CAS  Google Scholar 

  26. Nunes I, Tovmasian LT, Silva RM et al. Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA 2003; 100:4245–4250.

    Article  PubMed  CAS  Google Scholar 

  27. Simon HH, Saueressig H, Wurst W et al. Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J Neurosci 2001; 21:3126–3234.

    PubMed  CAS  Google Scholar 

  28. Simeone A, Acampora D, Gulisano M et al. Nested expression domains of four homeobox genes in developing rostral brain. Nature 1992; 358:687–690.

    Article  PubMed  CAS  Google Scholar 

  29. Simeone A, Acampora D, Mallamaci A et al. A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J 1993; 12:2735–2747.

    PubMed  CAS  Google Scholar 

  30. Acampora D, Mazan S, Lallemand Y et al. Forebrain and midbrain regions are deleted in Otx2−/−mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 1995; 121:3279–3290.

    PubMed  CAS  Google Scholar 

  31. Acampora D, Mazan S, Avantaggiato V et al. Epilepsy and brain abnormalities in mice lacking the Otx1 gene. Nat Genet 1996; 14:218–222.

    Article  PubMed  CAS  Google Scholar 

  32. Acampora D, Avantaggiato V, Tuorto F et al. Genetic control of brain morphogenesis through Otx gene dosage requirement. Development 1997; 124:3639–3650.

    PubMed  CAS  Google Scholar 

  33. Martinez-Barbera JP, Signore M, Boyl PP et al. Regionalisation of anterior neuroectoderm and its competence in responding to forebrain and midbrain inducing activities depend on mutual antagonism between OTX2 and GBX2. Development 2001; 128:4789–4800.

    PubMed  CAS  Google Scholar 

  34. Puelles E, Acampora D, Lacroix E et al. Otx dose-dependent integrated control of antero-posterior and dorso-ventral patterning of midbrain. Nat Neurosci 2003; 6:453–460.

    PubMed  CAS  Google Scholar 

  35. Puelles E, Annino A, Tuorto F et al. Otx2 regulates the extent, identity and fate of neuronal progenitor domains in the ventral midbrain. Development 2004; 131:2037–2048.

    Article  PubMed  CAS  Google Scholar 

  36. Prakash N, Brodski C, Naserke T et al. A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo. Development 2006; 133:89–98.

    Article  PubMed  CAS  Google Scholar 

  37. Borgkvist A, Puelles E, Carta M et al. Altered dopaminergic innervation and amphetamine response in adult Otx2 conditional mutant mice. Mol Cell Neurosci 2006; 31:293–302.

    Article  PubMed  CAS  Google Scholar 

  38. Puelles E, Acampora D, Gogoi R et al. Otx2 controls identity and fate of glutamatergic progenitors of the thalamus by repressing GABAergic differentiation. J Neurosci 2006; 26: 5955–5964.

    Article  PubMed  CAS  Google Scholar 

  39. Acampora D, Simeone A. the TINS Lecture. Understanding the roles of Otx1 and Otx2 in the control of brain morphogenesis. Trends Neurosci 1999; 22:116–122.

    Article  PubMed  CAS  Google Scholar 

  40. Simeone A, Puelles E, Acampora D. The Otx family. Curr Opin Genet Dev 2002; 12:409–415.

    Article  PubMed  CAS  Google Scholar 

  41. Lawrence PA, Struhl G. Morphogens, Compartments and Pattern: Lessons from Drosophila? Cell 1996; 85:951–961.

    Article  PubMed  CAS  Google Scholar 

  42. Martinez S, Wassef M, Alvarado-Mallart RM. Induction of a mesencephalic phenotype in the 2 day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron 1991; 6:971–981.

    Article  PubMed  CAS  Google Scholar 

  43. Crossley PH, Martinez S, Martin GR. Midbrain development induced by FGF8 in the chick embryo. Nature 1996; 380:66–68.

    Article  PubMed  CAS  Google Scholar 

  44. Shimamura K, Rubenstein JL. Inductive interactions direct early regionalization of the mouse forebrain. Development 1997; 124:2709–2718.

    PubMed  CAS  Google Scholar 

  45. Joyner AL, Liu A, Millet S. Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr Opin Cell Biol 2000; 12:736–741.

    Article  PubMed  CAS  Google Scholar 

  46. Rhinn M, Brand M. The midbrain-hindbrain boundary organizer. Curr Opin Neurobiol 2001; 11:34–42.

    Article  PubMed  CAS  Google Scholar 

  47. Ye W, Bouchard M, Stone D et al. Distinct regulators control the expression of the mid-hindbrain organizer signal FGF8. Nature Neurosc 2001; 4:1175–1181.

    Article  CAS  Google Scholar 

  48. Suda Y, Matsuo I, Aizawa S. Cooperation between Otx1 and Otx2 genes in developmental patterning of rostral brain. Mech Dev 1997; 69:125–141.

    Article  PubMed  CAS  Google Scholar 

  49. Acampora D, Avantaggiato V, Tuorto F et al. Visceral endodern-restricted translation of Otx1 mediates recovering of Otx2 requirements for specification of anterior neural plate and proper gastrulation. Development 1998; 125:5091–5104.

    PubMed  CAS  Google Scholar 

  50. Broccoli V, Boncinelli E, Wurst W. The caudal limit of Otx2 expression positions the isthmic organizer. Nature 1999; 401:164–168.

    Article  PubMed  CAS  Google Scholar 

  51. Wassarmann KM, Lewandoski M, Campbell K et al. Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer dependent on Gbx2 gene function. Development 1997; 124:2923–2934.

    Google Scholar 

  52. Millet S, Campbell K, Epstein DJ et al. A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature 1999; 401:161–164.

    Article  PubMed  CAS  Google Scholar 

  53. Li YH, Joyner AL. Otx2 and Gbx2 are required for refinement and not induction of mid-hindbrain gene expression. Development 2001; 128:4979–4991.

    PubMed  CAS  Google Scholar 

  54. Pilo Boyl P, Signore M, Acampora D et al. Forebrain and midbrain development requires epiblast-restricted Otx2 translational control mediated by its 3′ UTR. Development 2001; 128:2989–3000.

    Google Scholar 

  55. Li JY, Lao Z, Joyner AL. Changing requirements for Gbx2 in development of the cerebellum and maintenance of the mid/hindbrain organizer. Neuron 2002; 36:31–43.

    Article  PubMed  CAS  Google Scholar 

  56. Agarwala S, Sanders TA, Ragsdale CW. Sonic hedgehog control of size and shape in midbrain pattern formation. Science 2001; 291:2147–2150.

    Article  PubMed  CAS  Google Scholar 

  57. Heimbucher T, Murko C, Bajoghli B et al. Gbx2 and Otx2 interact with the WD40 domain of Groucho/Tle corepressors. Mol Cell Biol 2007; 27:340–51.

    Article  PubMed  CAS  Google Scholar 

  58. Eberhard D, Jimenez G, Heavey B et al. Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. EMBO J 2000; 19:2292–2303.

    Article  PubMed  CAS  Google Scholar 

  59. Fisher AL, Caudy M. Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev 1998; 12:1931–1940.

    Article  PubMed  CAS  Google Scholar 

  60. Fisher AL, Ohsako S, Caudy M. The WRPW motif of the hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein-protein interaction domain. Mol Cell Biol 1996; 16:2670–2677.

    PubMed  CAS  Google Scholar 

  61. Muhr J, Andersson E, Persson M et al. Groucho-mediated transcriptional repression establishes progenitor cell pattern and neuronal fate in the ventral neural tube. Cell 2001; 104:861–873.

    Article  PubMed  CAS  Google Scholar 

  62. Zhu CC, Dyer MA, Uchikawa M et al. Six3-mediated auto repression and eye development requires its interaction with members of the Groucho-related family of corepressors. Development 2002; 129:2835–2849.

    PubMed  CAS  Google Scholar 

  63. Wolpert L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 1969; 25:1–47.

    Article  PubMed  CAS  Google Scholar 

  64. Briscoe J, Sussel L, Serup P et al. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 1999; 398:622–627.

    Article  PubMed  CAS  Google Scholar 

  65. Pattyn A, Vallstedt A, Dias JM et al. Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes Dev 2003; 17:729–737.

    Article  PubMed  CAS  Google Scholar 

  66. Brodski C, Weisenhorn DM, Signore M et al. Location and size of dopaminergic and serotonergic cell populations are controlled by the position of the midbrain-hindbrain organizer. J Neurosci 2003; 23:4199–4207.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Simeone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Simeone, A., Puelles, E., Acampora, D., Omodei, D., Mancuso, P., Di Giovannantonio, L.G. (2009). The Role of Otx Genes in Progenitor Domains of Ventral Midbrain. In: Pasterkamp, R.J., Smidt, M.P., Burbach, J.P.H. (eds) Development and Engineering of Dopamine Neurons. Advances in Experimental Medicine and Biology, vol 651. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0322-8_3

Download citation

Publish with us

Policies and ethics