Skip to main content

Light Coupling and Passive Optical Devices

  • Chapter
  • First Online:
Fiber Optics Engineering

Part of the book series: Optical Networks ((OPNW))

  • 2669 Accesses

In electrical circuits, passive components refer to resistors, capacitors, and inductors; elements that overall consume power. On the other hand, active components deliver power to a system. In fiber optic systems, passive components typically refer to those that are not involved in opto-electric conversion, i.e., they neither generate nor detect light. Instead they are involved in guiding or manipulating the light without adding energy to it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Chapter 5 for a discussion on numerical aperture and guided modes in a fiber.

  2. 2.

    Of course, in realty, any finite size column of light traveling in free space will eventually diffract.

References

  1. A. Christopher et al., “Ideal microlenses for laser to fiber coupling,” Journal of Lightwave Technology, Vol. 11, pp. 252–257, 1993

    Article  Google Scholar 

  2. Z. Jing et al., “Design and characterization of taper coupler for effective laser and single-mode fiber coupling with large tolerance,” IEEE Photonics Technology Letters, Vol. 20, pp. 1375–1377, 2008

    Article  Google Scholar 

  3. K. Shiraishi, H. Yoda, T. Endo, and I. Tomita, “A lensed GIO fiber with a long working distance for the coupling between laser diodes with elliptical fields and single-mode fibers,” IEEE Photonics Technology Letters, Vol. 16, pp. 1104–1106, 2004

    Article  Google Scholar 

  4. R. A. Modavis and T. W. Webb, “Anamorphic microlens for laser diode to single-mode fiber coupling,” IEEE Photonics Technology Letters, Vol. 7, pp. 798–800, 1995

    Article  Google Scholar 

  5. J. Sakai and T. Kimura, “Design of a miniature lens for semiconductor laser to single-mode fiber coupling,” IEEE Journal of Quantum Electronics, Vol. 16, pp. 1059–1067, 1980

    Article  Google Scholar 

  6. H. M. Presby and A. Benner, “Bevelled-microlensed taper connectors for laser and fibre coupling with minimal back-reflections,” Electronics Letters, Vol. 24, pp. 1162–1163, 1988

    Article  Google Scholar 

  7. S. Mukhopadhyay, S. Gangopadhyay, and S. Sarkar, “Misalignment considerations in a laser diode to monomode elliptic core fiber coupling via a hyperbolic microlens on the fiber tip: efficiency computation by the ABCD matrix,” Optical Engineering, Vol. 46, Article No. 095008, 2007

    Google Scholar 

  8. K. Shiraishi et al., “A fiber lens with a long working distance for integrated coupling between laser diodes and single-mode fibers,” Journal of Lightwave Technology, Vol. 13, pp. 1736–1744, 1995

    Article  Google Scholar 

  9. K. Kato et al., “Optical coupling characteristics of laser diodes to thermally diffused expanded core fiber coupling using an aspheric lens,” IEEE Photonics Technology Letters, Vol. 3, pp. 469–470, 1991

    Article  Google Scholar 

  10. Y. Fu et al., “Integrated micro-cylindrical lens with laser diode for single-mode fiber coupling,” IEEE Photonics Technology Letters, Vol. 12, pp. 1213–1215, 2000

    Article  Google Scholar 

  11. T. Sugie and M. Saruwatari, “Distributed feedback laser diode (DFB-LD) to single-mode fiber coupling module with optical isolator for high bit rate modulation,” Journal of Lightwave Technology, Vol. 4, pp. 236–245, 1986

    Article  Google Scholar 

  12. K. Kurokawa and E. E. Becker, “Laser fiber coupling with a hyperbolic lens,” IEEE Transactions on Microwave Theory and Techniques, Vol. 23, pp. 309–311, 1975

    Article  Google Scholar 

  13. M. Saruwatari and T. Sugie, “Efficient laser diode to single-mode fiber coupling using a combination of two lenses in confocal condition,” IEEE Journal of Quantum Electronics, Vol. 17, pp. 1021–1027, 1981

    Article  Google Scholar 

  14. K. Kato and I. Nishi, “Low-loss laser diode module using a molded aspheric glass lens,” IEEE Photonics Technology Letters, Vol. 2, pp 473–374, 1990

    Google Scholar 

  15. J. K. Myoung et al., “Lens-free optical fiber connector having a long working distance assisted by matched long-period fiber gratings,” Journal of Lightwave Technology, Vol. 23, pp. 588–596, 2005

    Article  Google Scholar 

  16. Y. Abe et al., “16-fiber fiber physical contact connector with MU connector coupling mechanism, compact shutter and fiber clamping structure,” IEEE Transactions on Electronics, Vol. E87-C, pp. 1307–1312, 2004

    Google Scholar 

  17. K. Shibata, M. Takaya, and S Nagasawa, “Design and performance of high-precision MT-type connector for 1.55-mu m zero-dispersion-shifted fiber-ribbon cables,” IEEE Photonics Technology Letters, Vol. 13, pp. 136–138, 2001

    Article  Google Scholar 

  18. K. M. Wagner, D. L. Dean, and M. Giebel, “SC-DC/SC-QC fiber optic connector,” Optical Engineering, Vol. 37, pp. 3129–3133, 1998

    Article  Google Scholar 

  19. K. Kanayama et al., “Characteristics of an SC-type optical fiber connector with a newly developed pre-assembled ferrule,” IEEE Photonics Technology Letters, Vol. 7, pp. 520–522, 1995

    Article  Google Scholar 

  20. TIA-604-2-B (FOCIS-2) Fiber Optic Connector Intermateability Standard, Type ST, Telecommunication Industry Association (TIA), 2004

    Google Scholar 

  21. TIA-604-4-B (FOCIS-4) Fiber Optic Connector Intermateability Standard, Type FC and FC-APC, Telecommunication Industry Association (TIA), 2004

    Google Scholar 

  22. TIA-604-3-B (FOCIS-3) Fiber Optic Connector Intermateability Standard, Type SC and SC-APC, Telecommunication Industry Association (TIA), 2004

    Google Scholar 

  23. TIA/EIA-604-10A (FOCIS-10) Fiber Optic Connector Intermateability Standard-Type LC, Telecommunication Industry Association (TIA), 2002

    Google Scholar 

  24. TIA-604-1 (FOCIS 1) Fiber Optic Connector Intermateability Standard, Telecommunication Industry Association (TIA), 1996

    Google Scholar 

  25. TIA-604-5-B (FOCIS 5) Fiber Optic Connector Intermateability Standard-Type MPO, Telecommunication Industry Association (TIA), 2002

    Google Scholar 

  26. TIA/EIA-604-12 (FOCIS 12) Fiber Optic Connector Intermateability Standard Type MT-RJ, Telecommunication Industry Association (TIA), 2000

    Google Scholar 

  27. TIA-604-17 (FOCIS 17) Fiber Optic Connector Intermateability Standard, Type MU, Telecommunication Industry Association (TIA), 2004

    Google Scholar 

  28. A. D. Yablon, Optical Fiber Fusion Splicing , Springer, Heidelberg, 2005

    Google Scholar 

  29. Application Note AN103, “Single Fiber Fusion Splicing,” Corning, 2001, available at www.corning.com

  30. V. Alwayn, Optical Network Design and Implementation , Cisco Press, Indianapolis, IN, 2004

    Google Scholar 

  31. K. S. Chiang, F. Y. M. Chan, and M. N. Ng, “Analysis of two parallel long-period fiber gratings,” Journal of Lightwave Technology, Vol. 22, pp. 1358–1366, 2004

    Article  Google Scholar 

  32. S. J. Hewlett, J. D. Love, and V. V. Steblina, “Analysis and design of highly broad-band, planar evanescent couplers,” Optical and Quantum Electronics, Vol. 28, pp. 71–81, 1996

    Article  Google Scholar 

  33. A. Ankiewicz, A. Snyder, and X. H. Zheng, “Coupling between parallel optical fiber cores-Critical examination,” Journal of Lightwave Technology, Vol. 4, pp. 1317–1323, 1986

    Article  Google Scholar 

  34. M. Tabiani and M. Kavehrad, “An efficient N×N passive optical star coupler,” IEEE Photonics Technology Letters, Vol. 2, pp. 826–829, 1990

    Article  Google Scholar 

  35. A. A. M. Saleh and H. Kogelnik, “Reflective single-mode fiber-optic passive star couplers,” Journal of Lightwave Technology, Vol. 6, pp. 392–398, 1988

    Article  Google Scholar 

  36. B. Borovic et al., “Light-intensity-feedback-waveform generator based on MEMS variable optical attenuator,” IEEE Transactions on Industrial Electronics, Vol. 55, pp. 417–426, 2008

    Article  Google Scholar 

  37. A. Unamuno and D. Uttamchandani, “MEMS variable optical attenuator with Vernier latching mechanism,” IEEE Photonics Technology Letters, Vol. 18, pp. 88–90, 2008

    Article  Google Scholar 

  38. H. Cai et al., “Linear MEMS variable optical attenuator using reflective elliptical mirror,” IEEE Photonics Technology Letters, Vol. 17, pp. 402–204, 2005

    Google Scholar 

  39. K. Shiraishi, F. Tajima, and S Kawakami, “Compact faraday rotator for an optical isolator using magnets arranged with alternating polarities,” Optics Letters, Vol. 11, pp. 82–84, 1986

    Article  Google Scholar 

  40. J. F. Lafortune and R. Vallee, “Short length fiber Faraday rotator,” Optics Communications, Vol. 86, pp. 497–503, 1991

    Article  Google Scholar 

  41. D. J. Gauthier, P. Narum, and R. W. Boyd, “Simple, compact, high-performance permanent magnet Faraday isolator,” Optics Letters, Vol. 11, pp. 623–625, 1986

    Article  Google Scholar 

  42. H. A. Macleod, Thin Film Optical Filters , 3rd Ed., Institute of Physics Publishing, Bristol, 2003

    Google Scholar 

  43. V. Kochergin, Omnidirectional Optical Filters , Kluwer Academic Publishers, Dordrecht, 2003

    Google Scholar 

  44. K. Okamoto, Fundamentals of Optical Waveguides , 2nd Ed, Academic Press, New York, 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Azadeh .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Azadeh, M. (2009). Light Coupling and Passive Optical Devices. In: Fiber Optics Engineering. Optical Networks. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0304-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0304-4_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0303-7

  • Online ISBN: 978-1-4419-0304-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics