Subtypes of HLA-B27: History and Implications in the Pathogenesis of Ankylosing Spondylitis

  • John D. Reveille
  • Rashmi M. Maganti
Part of the Advances in Experimental Medicine and Biology book series (volume 649)

Abstract

HLA-B27 represents a family of 38 closely related cell surface proteins (encoded by the alleles HLA-B * 2701-39) called subtypes of HLA-B27, most of which have evolved from the ubiquitous HLA-B * 2705 (specifically the B * 27052 allele).1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 HLA-B27 subtypes are largely characterized by nucleotide substitutions (mostly nonsynonymous) in exons 2 and 3 which encode α1 and α2 domains of the peptide binding groove respectively. Table 1 shows the description of sequences of HLA-B27 allele sequences. The subtypes could have arisen from B*2705 by point mutation (B*2703, B*2709, B*2704), gene conversion (B*2701, B*2702, B*2708) and reciprocal recombination (B*2707)26B*2706 could have arisen by interlocus gene conversion. Studies from different parts of the world reveal differences in the population distribution.

Keywords

Arthritis Tyrosine Cysteine Serine Lysine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weiss EH, Kuon W, Dorner C et al. Organization, sequence and expression of the HLA-B27 gene: a molecular approach to analyze HLA and disease associations. Immunobiology 1985; 170(5):367–80.PubMedCrossRefGoogle Scholar
  2. 2.
    Seemann GH, Rein RS, Brown CS et al. Gene conversion-like mechanisms may generate polymorphism in human class I genes. EMBO J 1986; 5(3):547–552.PubMedGoogle Scholar
  3. 3.
    Rojo S, Aparicio P, Choo SY et al. Structural analysis of an HLA-B27 population variant, B27f. Multiple patterns of amino acid changes within a single polypeptide segment generate polymorphism in HLA-B27. J Immunol 1987; 139(3):831–836.PubMedGoogle Scholar
  4. 4.
    Rojo S, Aparicio P, Choo SY et al. Structural analysis of an HLA-B27 population variant, B27 f. Multiple patterns of amino acid changes within a single polypeptide segment generate polymorphism in HLA-B27. J Immunol 1987; 139(3):831–836.PubMedGoogle Scholar
  5. 5.
    Rojo S, Aparicio P, Hansen JA et al. Structural analysis of an HLA-B27 functional variant, B27d, detected in American blacks. J Immunol 1987; 139 (10):3396–3401.PubMedGoogle Scholar
  6. 6.
    Vega MA, Wallace L, Rojo S et al. Delineation of functional sites in HLA-B27 antigens. Molecular analysis of HLA-B27 variant Wewak I defined by cytolytic T-lymphocytes. J Immunol 1985; 135(5):3323–3332.PubMedGoogle Scholar
  7. 7.
    Vega MA, Bragado R, Ivanyi P et al. Molecular analysis of a functional subtype of HLA-B27. A possible evolutionary pathway for HLA-B27 polymorphism. J Immunol 1986; 137(11):3557–3565.PubMedGoogle Scholar
  8. 8.
    Choo SY, Fan LA, Hansen JA. A novel HLA-B27 allele maps B27 allospecificity to the region around position 70 in the alpha 1 domain. J Immunol 1991; 147(1):174–180.PubMedGoogle Scholar
  9. 9.
    Hildebrand WH, Domena JD, Shen SY et al. The HLA-B7 Qui antigen is encoded by a new subtype of HLA-B27 (B*2708). Tissue Antigens 1994; 44(1):47–51.PubMedCrossRefGoogle Scholar
  10. 10.
    Del PP, D’Amato M, Fiorillo MT et al. Identification of a novel HLA-B27 subtype by restriction analysis of a cytotoxic gamma delta T-cell clone. J Immunol 1994; 153(7):3093–3100.Google Scholar
  11. 11.
    Hasegawa T, Ogawa A, Sugahara Y et al. A novel HLA-B27 allele (B*2711) encoding an antigen reacting with both B27-and B40-specific antisera. Tissue Antigens 1997;49(6):649–652.PubMedCrossRefGoogle Scholar
  12. 12.
    Balas A, Santos S, Garcia-Sanchez F et al. Complete coding sequence of HLA-B*2712: a serologic B27-negative antigen associated to Bw6. Tissue Antigens 1998; 51(4 Pt 1):394–397.PubMedGoogle Scholar
  13. 13.
    Seurynck K, Baxter-Lowe LA. Novel polymorphism detected in exon 1 of HLA-B*2713. Tissue Antigens 1998; 52(2):187–189.PubMedCrossRefGoogle Scholar
  14. 14.
    Steiner NK, Jones P, Kosman C et al. Novel HLA-B alleles associated with antigens in the 7C CREG. Tissue Antigens 2001; 57(5):486–488.PubMedCrossRefGoogle Scholar
  15. 15.
    Voorter CE, Swelsen WT, van den Berg-Loonen EM. B*27 in molecular diagnostics: impact of new alleles and polymorphism outside exons 2 and 3. Tissue Antigens 2002; 60(1):25–35.PubMedCrossRefGoogle Scholar
  16. 16.
    Steiner NK, Jones P, Kosman C et al. Novel HLA-B alleles associated with antigens in the 7C CREG. Tissue Antigens 2001; 57(5):486–488.PubMedCrossRefGoogle Scholar
  17. 17.
    Voorter CE, Swelsen WT, van den Berg-Loonen EM. B*27 in molecular diagnostics: impact of new alleles and polymorphism outside exons 2 and 3. Tissue Antigens 2002; 60(1):25–35.PubMedCrossRefGoogle Scholar
  18. 18.
    Feldman D, Kearns J, Wu J et al. Identification and sequencing of HLA-B*0714 and B*2718 alleles and novel exon 1 sequences of B*0709 and B*2714 alleles in potential bone marrow donors. Tissue Antigens 2002; 59(5):426–429.PubMedCrossRefGoogle Scholar
  19. 19.
    Tamouza R, Mansour I, Bouguacha N et al. A new HLA-B*27 allele (B*2719) identified in a Lebanese patient affected with ankylosing spondylitis. Tissue Antigens 2001; 58(1):30–33.PubMedCrossRefGoogle Scholar
  20. 20.
    Kim MA et al. Hum Immunol 61(S1):50–50 2000 (abstract).Google Scholar
  21. 21.
    Gans CP, Mitton W, Ng J et al. Seven new HLA-B alleles associated with antigens in the B7 CREG. Tissue Antigens 2002; 59(3):229–231.PubMedCrossRefGoogle Scholar
  22. 22.
    Darke C, Street J, Hammond L et al. Immunogenetic study of a new HLA allele, B*2723. Tissue Antigens 2002; 60(5):400–403.PubMedCrossRefGoogle Scholar
  23. 23.
    Steiner NK, Gans C, Baldassarre L et al. Twenty-five novel HLA-B alleles. Tissue Antigens 2003; 62(3):263–266.PubMedCrossRefGoogle Scholar
  24. 24.
    Steiner NK, Gans C, Baldassarre L et al. Twenty-five novel HLA-B alleles. Tissue Antigens 2003; 62(3):263–266.PubMedCrossRefGoogle Scholar
  25. 25.
    Luo M, Mao X, Plummer FA. Identification of four novel HLA-B alleles, B*1590, B*1591, B*2726 and B*4705, from an East African population by high-resolution sequence-based typing. Tissue Antigens 2005; 65(2):187–191.PubMedCrossRefGoogle Scholar
  26. 26.
    Lazaro AM, Cao K, Masaberg C et al. Twenty-three novel HLA-B alleles identified during intermediate-resolution testing. Tissue Antigens 2006; 68(3):245–248.PubMedCrossRefGoogle Scholar
  27. 27.
    Vidan-Jeras B, Kunilo S, Fae I et al. A novel HLA-B*2730 allele found in a Slovene patient affected with IgA nephropathy. Int J Immunogenet 2006; 33(5):371–373.PubMedCrossRefGoogle Scholar
  28. 28.
    Witter K, Albert T, Volgger A et al. Routine HLA sequence-specific-oligonucleotide typing and confirming sequence-based typing of a prospective bone marrow donor identified a novel B*27 allele, HLA-B*2734. Tissue Antigens 2006; 68(6):527–528.PubMedCrossRefGoogle Scholar
  29. 29.
    Li Z, Zou HY, Shao CP et al. Identification of a novel HLA-B*56 allele, B*5618 and an extension of B*2736 by sequence-based typing. Tissue Antigens 2007; 69(4):365–366.PubMedCrossRefGoogle Scholar
  30. 30.
    Lopez-Larrea C, Gonzalez-Roces S, Alvarez V. HLA-B27 structure, function and disease association. Curr Opin Rheumatol 1996; 8(4):296–308.PubMedCrossRefGoogle Scholar
  31. 31.
    Spencer Wells: The Journey of Man: A Genetic Odyssey. Princeton University Press, 2002.Google Scholar
  32. 32.
    Diamond J. Guns germs and steel. The Fates of Human Societies. WW Norton and Company, New York, NY 1999.Google Scholar
  33. 33.
    Seemann GH, Rein RS, Brown CS et al. Gene conversion-like mechanisms may generate polymorphism in human class I genes. EMBO J 1986; 5(3):547–552.PubMedGoogle Scholar
  34. 34.
    Seemann GH, Rein RS, Brown CS et al. Gene conversion-like mechanisms may generate polymorphism in human class I genes. EMBO J 1986; 5(3):547–552.PubMedGoogle Scholar
  35. 35.
    Rojo S, Aparicio P, Choo SY et al. Structural analysis of an HLA-B27 population variant, B27f. Multiple patterns of amino acid changes within a single polypeptide segment generate polymorphism in HLA-B27. J Immunol 1987; 139(3):831–836.PubMedGoogle Scholar
  36. 36.
    Khan MA, Mathieu A, Sorrentino R et al. The pathogenetic role of HLA-B27 and its subtypes. Autoimmun Rev 2007; 6(3):183–189.PubMedCrossRefGoogle Scholar
  37. 37.
    Hildebrand WH, Domena JD, Shen SY et al. The HLA-B7Qui antigen is encoded by a new subtype of HLA-B27 (B*2708). Tissue Antigens 1994; 44(1):47–51.PubMedCrossRefGoogle Scholar
  38. 38.
    Cipriani A, Rivera S, Hassanhi M et al. HLA-B27 subtypes determination in patients with ankylosing spondylitis from Zulia, Venezuela. Hum Immunol 2003; 64(7):745–749.PubMedCrossRefGoogle Scholar
  39. 39.
    Shankarkumar U. HLA-B27 allele diversity in Indians: impact of ethnic origin and the caste system. Br J Biomed Sci 2003; 60(4):223–226.PubMedGoogle Scholar
  40. 40.
    Oguz FS, Ocal L, Diler AS et al. HLA B-27 subtypes in turkish patients with spondyloarthropathy and healthy controls. Dis Markers 2004; 20(6):309–312.PubMedGoogle Scholar
  41. 41.
    Fernandez-Sueiro JL, Alonso C, Blanco FJ et al. Prevalence of HLA-B27 and subtypes of HLA-B27 associated with ankylosing spondylitis in Galicia, Spain. Clin Exp Rheumatol 2004; 22(4):465–468.PubMedGoogle Scholar
  42. 42.
    Balas A, Santos S, Garcia-Sanchez F et al. Complete coding sequence of HLA-B*2712: a serologic B27-negative antigen associated to Bw6. Tissue Antigens 1998; 51(4 Pt 1):394–397.PubMedGoogle Scholar
  43. 43.
    Yang G, Deng YJ, Yan CX et al. [Frequencies distribution of human leukocyte antigen-B27 subtypes in healthy Chinese]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2006; 28(2):240–243.PubMedGoogle Scholar
  44. 44.
    MacLean L. HLA-B27 subtypes: implications for the spondyloarthropathies. Ann Rheum Dis 1992; 51(8):929–931.PubMedCrossRefGoogle Scholar
  45. 45.
    Alaez C, Gazit E, Ibarrola B et al. Distribution of HLA-B27 subtypes in ankylosing spondylitis in an Israeli population. Arch Med Res 2007; 38(4):452–455.PubMedCrossRefGoogle Scholar
  46. 46.
    Yang G, Deng YJ, Yan CX et al. [Frequencies distribution of human leukocyte antigen-B27 subtypes in healthy Chinese]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2006; 28(2):240–243.PubMedGoogle Scholar
  47. 47.
    Taurog JD. Immunology, genetics and animal models of the spondyloarthropathies. Curr Opin Rheumatol 1990; 2(4):586–591.PubMedCrossRefGoogle Scholar
  48. 48.
    Ma HJ, Hu FP. Diversity of human leukocyte antigen-B27 alleles in han population of human province, southern China. Tissue Antigens 2006; 68(2):163–166.PubMedCrossRefGoogle Scholar
  49. 49.
    Yang G, Deng YJ, Yan CX et al. [Frequencies distribution of human leukocyte antigen-B27 subtypes in healthy Chinese]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2006; 28(2):240–243.PubMedGoogle Scholar
  50. 50.
    Leffell MS, Fallin MD, Hildebrand WH et al. HLA alleles and haplotypes among the lakota sioux: report of the ASHI minority workshops, part III. Hum Immunol 2004; 65(1):78–89.PubMedCrossRefGoogle Scholar
  51. 51.
    Steiner NK, Jones P, Kosman C et al. Novel HLA-B alleles associated with antigens in the 7C CREG. Tissue Antigens 2001; 57(5):486–488.PubMedCrossRefGoogle Scholar
  52. 52.
    Leffell MS, Fallin MD, Hildebrand WH et al. HLA alleles and haplotypes among the lakota sioux: report of the ASHI minority workshops, part III. Hum Immunol 2004; 65(1):78–89.PubMedCrossRefGoogle Scholar
  53. 53.
    Dhaliwal JS, Too CL, Lisut M et al. HLA-B27 polymorphism in the Malays. Tissue Antigens 2003; 62(4):330–332.PubMedCrossRefGoogle Scholar
  54. 54.
    Ma HJ, Hu FP. Diversity of human leukocyte antigen-B27 alleles in han population of human province, southern China. Tissue Antigens 2006; 68(2):163–166.PubMedCrossRefGoogle Scholar
  55. 55.
    Ma HJ, Hu FP. Diversity of human leukocyte antigen-B27 alleles in han population of human province, southern China. Tissue Antigens 2006; 68(2):163–166.PubMedCrossRefGoogle Scholar
  56. 56.
    Yamaguchi A, Ogawa A, Tsuchiya N et al. HLA-B27 subtypes in Japanese with seronegative spondy-loarthropathies and healthy controls. J Rheumatol 1996; 23(7):1189–1193.PubMedGoogle Scholar
  57. 57.
    Lopez-Larrea C, Sujirachato K, Mehra NK et al. HLA-B27 subtypes in Asian patients with ankylosing Evidence for new associations. Tissue Antigens 1995; 45(3):169–176.PubMedCrossRefGoogle Scholar
  58. 58.
    Li Z, Zou HY, Shao CP et al. Identification of a novel HLA-B*56 allele, B*5618 and an extension of B*2736 by sequence-based typing. Tissue Antigens 2007; 69(4):365–366.PubMedCrossRefGoogle Scholar
  59. 59.
    Dhaliwal JS, Too CL, Lisut M et al. HLA-B27 polymorphism in the Malays. Tissue Antigens 2003; 62(4):330–332.PubMedCrossRefGoogle Scholar
  60. 60.
    Hasegawa T, Ogawa A, Sugahara Y et al. A novel HLA-B27 allele (B*2711) encoding an antigen reacting with both B27-and B40-specific antisera. Tissue Antigens 1997; 49(6):649–652.PubMedCrossRefGoogle Scholar
  61. 61.
    Yang G, Deng YJ, Yan CX et al. [Frequencies distribution of human leukocyte antigen-B27 subtypes in healthy Chinese]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2006; 28(2):240–243.PubMedGoogle Scholar
  62. 62.
    Ma HJ, Hu FP. Diversity of human leukocyte antigen-B27 alleles in Han population of Human province, southern China. Tissue Antigens 2006; 68(2):163–166.PubMedCrossRefGoogle Scholar
  63. 63.
    Garcia-Fernandez S, Gonzales S, Mina BA et al. New insights regarding HLA-B27 diversity in the asian population. Tissue Antigens 2001; 58(4):259–262.PubMedCrossRefGoogle Scholar
  64. 64.
    Feldman D, Kearns J, Wu J et al. Identification and sequencing of HLA-B*0714 and B*2718 alleles and novel exon 1 sequences of B*0709 and B*2714 alleles in potential bone marrow donors. Tissue Antigens 2002; 59(5):426–429.PubMedCrossRefGoogle Scholar
  65. 65.
    Chhaya SU. HLA-B27 polymorphism in Mumbai, Western India. Tissue Antigens 2005; 66(1):48–50.PubMedCrossRefGoogle Scholar
  66. 66.
    Lazaro AM, Cao K, Masaberg C et al. Twenty-three novel HLA-B alleles identified during intermediate-resolution testing. Tissue Antigens 2006; 68(3):245–248.PubMedCrossRefGoogle Scholar
  67. 67.
    Li Z, Zou HY, Shao CP et al. Identification of a novel HLA-B*56 allele, B*5618 and an extension of B*2736 by sequence-based typing. Tissue Antigens 2007; 69(4):365–366.PubMedCrossRefGoogle Scholar
  68. 68.
    Lopez-Larrea C, Gonzalez-Roces S, Alvarez V. HLA-B27 structure, function and disease association. Curr Opin Rheumatol 1996; 8(4):296–308.PubMedCrossRefGoogle Scholar
  69. 69.
    Alaez C, Gazit E, Ibarrola B et al. Distribution of HLA-B27 subtypes in ankylosing spondylitis in an Israeli population. Arch Med Res 2007; 38(4):452–455.PubMedCrossRefGoogle Scholar
  70. 70.
    Varnavidou-Nicolaidou A, Karpasitou K, Georgiou D et al. HLA-B27 in the Greek Cypriot population: distribution of subtypes in patients with ankylosing spondylitis and other HLA-B27-related diseases. The possible protective role of B*2707. Hum Immunol 2004; 65(12):1451–1454.PubMedCrossRefGoogle Scholar
  71. 71.
    Lopez-Larrea C, Gonzalez-Roces S, Alvarez V. HLA-B27 structure, function and disease association. Curr Opin Rheumatol 1996; 8(4):296–308.PubMedCrossRefGoogle Scholar
  72. 72.
    Del PP, D’Amato M, Fiorillo MT et al. Identification of a novel HLA-B27 subtype by restriction analysis of a cytotoxic gamma delta T-cell clone. J Immunol 1994; 153(7):3093–3100.Google Scholar
  73. 73.
    Tamouza R, Mansour I, Bouguacha N et al. A new HLA-B*27 allele (B*2719) identified in a lebanese patient affected with ankylosing spondylitis. Tissue Antigens 2001; 58(1):30–33.PubMedCrossRefGoogle Scholar
  74. 74.
    Garcia F, Rognan D, Lamas JR et al. An HLA-B27 polymorphism (B*2710) that is critical for T-cell recognition has limited effects on peptide specificity. Tissue Antigens 1998; 51(1):1–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Garcia F, Rognan D, Lamas JR et al. An HLA-B27 polymorphism (B*2710) that is critical for T-cell recognition has limited effects on peptide specificity. Tissue Antigens 1998; 51(1):1–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Garcia-Fernandez S, Gonzales S, Mina BA, et al. New insights regarding HLA-B27 diversity in the asian population. Tissue Antigens 2001; 58(4):259–262.PubMedCrossRefGoogle Scholar
  77. 77.
    Witter K, Albert T, Volgger A et al. Routine HLA sequence-specific-oligonucleotide typing and confirming sequence-based typing of a prospective bone marrow donor identified a novel B*27 allele, HLA-B*2734. Tissue Antigens 2006; 68(6):527–528.PubMedCrossRefGoogle Scholar
  78. 78.
    Lopez-Larrea C, Gonzalez-Roces S, Alvarez V. HLA-B27 structure, function and disease association. Curr Opin Rheumatol 1996; 8(4):296–308.PubMedCrossRefGoogle Scholar
  79. 79.
    Gonzalez-Roces S, Alvarez MV, Gonzalez S et al. HLA-B27 polymorphism and worldwide susceptibility to ankylosing spondylitis. Tissue Antigens 1997; 49(2):116–123.PubMedCrossRefGoogle Scholar
  80. 80.
    Nasution AR, Mardjuadi A, Kunmartini S et al. HLA-B27 subtypes positively and negatively associated with spondyloarthropathy. J Rheumatol 1997; 24(6):1111–1114.PubMedGoogle Scholar
  81. 81.
    Gonzalez-Roces S, Alvarez MV, Gonzalez S et al. HLA-B27 polymorphism and worldwide susceptibility to ankylosing spondylitis. Tissue Antigens 1997; 49(2):116–123.PubMedCrossRefGoogle Scholar
  82. 82.
    D’Amato M, Fiorillo MT, Galeazzi M et al. Frequency of the new HLA-B*2709 allele in ankylosing spondylitis patients and healthy individuals. Dis Markers 1995; 12(3):215–217.PubMedGoogle Scholar
  83. 83.
    Fiorillo MT, Cauli A, Carcassi C et al. Two distinctive HLA haplotypes harbor the B27 alleles negatively or positively associated with ankylosing spondylitis in Sardinia: implications for disease pathogenesis. Arthritis Rheum 2003; 48(5):1385–1389.PubMedCrossRefGoogle Scholar
  84. 84.
    Ramos M, Lopez de Castro JA. HLA-B27 and the pathogenesis of spondyloarthritis. Tissue Antigens 2002; 60 (3):191–205.PubMedCrossRefGoogle Scholar
  85. 85.
    Olivieri I, D’Angelo S, Scarano E et al. The HLA-B*2709 subtype in a woman with early ankylosing spondylitis. Arthritis Rheum 2007; 56(8):2805–2807.PubMedCrossRefGoogle Scholar
  86. 86.
    Cauli A, Vacca A, Mameli A et al. A Sardinian patient with ankylosing spondylitis and HLA-B*2709 co-occurring with HLA-B*1403. Arthritis Rheum 2007; 56(8):2807–2809.PubMedCrossRefGoogle Scholar
  87. 87.
    Lopez-Larrea C, Mijiyawa M, Gonzalez S et al. Association of ankylosing spondylitis with HLA-B*1403 in a West African population. Arthritis Rheum 2002; 46(11):2968–2971.PubMedCrossRefGoogle Scholar
  88. 88.
    D’Amato M, Fiorillo MT, Carcassi C et al. Relevance of residue 116 of HLA-B27 in determining susceptibility to ankylosing spondylitis. Eur J Immunol 1995; 25(11):3199–3201.PubMedCrossRefGoogle Scholar
  89. 89.
    Sesma L, Montserrat V, Lamas JR et al. The peptide repertoires of HLA-B27 subtypes differentially associated to spondyloarthropathy (B*2704 and B*2706) differ by specific changes at three anchor positions. J Biol Chem 2002; 277(19):16744–16749.PubMedCrossRefGoogle Scholar
  90. 90.
    Ramos M, Paradela A, Vazquez M et al. Differential association of HLA-B*2705 and B*2709 to ankylosing spondylitis correlates with limited peptide subsets but not with altered cell surface stability. J Biol Chem 2002; 277(32):28749–28756.PubMedCrossRefGoogle Scholar
  91. 91.
    Montserrat V, Marti M, Lopez de Castro JA. Allospecific T-cell epitope sharing reveals extensive conservation of the antigenic features of peptide ligands among HLA-B27 subtypes differentially associated with spondyloarthritis. J Immunol 2003; 170(11):5778–5785.PubMedGoogle Scholar
  92. 92.
    Khare SD, Lee S, Bull MJ et al. Peptide binding alpha1alpha2 domain of HLA-B27 contributes to the disease pathogenesis in transgenic mice. Hum Immunol 1999; 60(2):116–126.PubMedCrossRefGoogle Scholar
  93. 93.
    Lopez-Larrea C, Mijiyawa M, Gonzalez S et al. Association of ankylosing spondylitis with HLA-B*1403 in a West African population. Arthritis Rheum 2002; 46(11):2968–2971.PubMedCrossRefGoogle Scholar
  94. 94.
    Starikov EB, Nilsson L, Hulsmeyer M. A single residue exchange between two HLA-B27 alleles triggers increased peptide flexibility. Eur Biophys J 2004; 33(7):651–655.PubMedCrossRefGoogle Scholar
  95. 95.
    Fabian H, Huser H, Narzi D et al. HLA-B27 subtypes differentially associated with disease exhibit conformational differences in solution. J Mol Biol 2008; 376(3):798–810.PubMedCrossRefGoogle Scholar
  96. 96.
    Hulsmeyer M, Fiorillo MT, Bettosini F et al. Dual, HLA-B27 subtype-dependent conformation of a self-peptide. J Exp Med 2004; 199(2):271–281.PubMedCrossRefGoogle Scholar
  97. 97.
    Winkler K, Winter A, Rueckert C et al. Natural MHC class I polymorphism controls the pathway of peptide dissociation from HLA-B27 complexes. Biophys J 2007; 93(8):2743–2755.PubMedCrossRefGoogle Scholar
  98. 98.
    Hillig RC, Hulsmeyer M, Saenger W et al. Thermodynamic and structural analysis of peptide-and allele-dependent properties of two HLA-B27 subtypes exhibiting differential disease association. J Biol Chem 2004; 279(1):652–663.PubMedCrossRefGoogle Scholar
  99. 99.
    Hulsmeyer M, Welfle K, Pohlmann T et al. Thermodynamic and structural equivalence of two HLA-B27 subtypes complexed with a self-peptide. J Mol Biol 2005; 346(5):1367–1379.PubMedCrossRefGoogle Scholar
  100. 100.
    Fiorillo MT, Meadows L, D’Amato M et al. Susceptibility to ankylosing spondylitis correlates with the C-terminal residue of peptides presented by various HLA-B27 subtypes. Eur J Immunol 1997; 27(2):368–373.PubMedCrossRefGoogle Scholar
  101. 101.
    Garcia F, Marina A, Lopez de Castro JA. Lack of carboxyl-terminal tyrosine distinguishes the B*2706-bound peptide repertoire from those of B*2704 and other HLA-B27 subtypes associated with ankylosing spondylitis. Tissue Antigens 1997; 49(3 Pt 1):215–221.PubMedCrossRefGoogle Scholar
  102. 102.
    Lopez de Castro JA, Alvarez I, Marcilla M et al. HLA-B27: a registry of constitutive peptide ligands. Tissue Antigens 2004; 63(5):424–445.PubMedCrossRefGoogle Scholar
  103. 103.
    Tieng V, Dulphy N, Boisgerault F et al. HLA-B*2707 peptide motif: Tyr C-terminal anchor is not shared by all disease-associated subtypes. Immunogenetics 1997; 47(1):103–105.PubMedCrossRefGoogle Scholar
  104. 104.
    Gomez P, Montserrat V, Marcilla M et al. B*2707 differs in peptide specificity from B*2705 and B*2704 as much as from HLA-B27 subtypes not associated to spondyloarthritis. Eur J Immunol 2006; 36(7):1867–1881.PubMedCrossRefGoogle Scholar
  105. 105.
    Boyle LH, Goodall JC, Opat SS et al. The recognition of HLA-B27 by human CD4(+) T-lymphocytes. J Immunol 2001; 167(5):2619–2624.PubMedGoogle Scholar
  106. 106.
    Ramos M, Alvarez I, Sesma L et al. Molecular mimicry of an HLA-B27-derived ligand of arthritis-linked subtypes with chlamydial proteins. J Biol Chem 2002; 277(40):37573–37581.PubMedCrossRefGoogle Scholar
  107. 107.
    Fiorillo MT, Ruckert C, Hulsmeyer M et al. Allele-dependent similarity between viral and self-peptide presentation by HLA-B27 subtypes. J Biol Chem 2005; 280(4):2962–2971.PubMedCrossRefGoogle Scholar
  108. 108.
    Kollnberger S, Bird L, Sun MY et al. Cell-surface expression and immune receptor recognition of HLA-B27 homodimers. Arthritis Rheum 2002; 46(11):2972–2982.PubMedCrossRefGoogle Scholar
  109. 109.
    Turner MJ, DeLay ML, Bai S et al. HLA-B27 up-regulation causes accumulation of misfolded heavy chains and correlates with the magnitude of the unfolded protein response in transgenic rats: Implications for the pathogenesis of spondylarthritis-like disease. Arthritis Rheum 2007; 56(1):215–223.PubMedCrossRefGoogle Scholar
  110. 110.
    Mear JP, Schreiber KL, Munz C et al. Misfolding of HLA-B27 as a result of its B pocker suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J Immunol 1999; 163(12):6665–6670.PubMedGoogle Scholar
  111. 111.
    Giquel B, Carmouse S, Denais C et al. Two HLA-B27 alleles differently associated with spondylarchritis, B*2709 and B*2705, display similar intracellular trafficking and oligomer formation. Arthritis Rheum 2007; 56(7):2232–2242.PubMedCrossRefGoogle Scholar
  112. 112.
    Edwards JC, Bowness P, Archer JR. Jekyll and Hyde: the transformation of HLA-B27. Immunol Today 2000; 21(6):256–260.PubMedCrossRefGoogle Scholar
  113. 113.
    Saleki K, Hartigan N, Lith M et al. Differential oxidation of HLA-B2704 and HLA-B2705 in lymphoblastoid and transfected adherent cells. Antioxid Redox Signal 2006; 8(3–4):292–299.PubMedCrossRefGoogle Scholar
  114. 114.
    Vazquez MN, Lopez de Castro JA. Similar cell surface expression of beta2-microglobulin-free heavy chains by HLA-B27 subtypes differentially associated with ankylosing spondylitis. Arthritis Rheum 2005; 52(10):3290–3299.PubMedCrossRefGoogle Scholar
  115. 115.
    Montserrat V, Galocha B, Marcilla M et al. HLA-B*2704, an allotype associated with ankylosing spondylitis, is critically dependent on transporter associated with antigen processing and relatively independent of tapasin and immunoproteasome for maturation, surface expression and T-cell recognition: relationship to B*2705 and B*2706. J Immunol 2006; 177(10):7015–7023.PubMedGoogle Scholar
  116. 116.
    Goodall JC, Ellis L, Hill Gaston JS. Spondylarthritis-associated and nonspondylarthritis-associated B27 subtypes differ in their dependence upon tapasin for surface expression and their incorporation into the peptide loading complex. Arthritis Rheum 2006; 54(1):138–147.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • John D. Reveille
    • 1
  • Rashmi M. Maganti
  1. 1.Division of Rheumatology and Clinical ImmunogeneticsUniversity of Texas Health Science CenterHoustonUSA

Personalised recommendations