Skip to main content

Genomewide Screens in Ankylosing Spondylitis

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((volume 649))

Abstract

Efforts to identify genes other than HLA-B27 in AS have been driven by the strength of the evidence from genetic epidemiology studies indicating that HLA-B27, although a major gene in AS, is clearly not the only significant gene operating. This is the case for both genetic determinants of disease-susceptibility and phenotypic characteristics such as disease severity and associated disease features. In this chapter the genetic epidemiology of AS and the gene-mapping studies performed to date will be reviewed and the future direction of research in this field discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taurog JD, Richardson JA, Croft JT et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 1994; 180(6):2359–64.

    Article  PubMed  CAS  Google Scholar 

  2. Brown MA, Kennedy LG, MacGregor AJ et al. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA and the environment. Arthritis Rheum 1997;40(10):1823–8.

    Article  PubMed  CAS  Google Scholar 

  3. Pedersen O, Svendsen A, Ejstrup L et al. Heritability estimates on ankylosing spondylitis. Clin Exp Rheumatol 2006; 24(4):463.

    Google Scholar 

  4. Brown MA, Brophy S, Bradbury L et al. Identification of major loci controlling clinical manifestations of ankylosing spondylitis. Arthritis Rheum 2003; 48(8):2234–9.

    Article  PubMed  Google Scholar 

  5. Hamersma J, Cardon LR, Bradbury L et al. Is disease severity in ankylosing spondylitis genetically determined? Arthritis Rheum 2001; 44(6):1396–400.

    Article  PubMed  CAS  Google Scholar 

  6. Brophy S, Hickey S, Menon A et al. Concordance of disease severity among family members with ankylosing spondylitis? J Rheumatol 2004; 31(9):1775–8.

    PubMed  Google Scholar 

  7. Rowland-Jones S, Colbert RA, Dong T et al. Distinct recognition of closely-related HIV-1 and HIV-2 cytotoxic T-cell epitopes presented by HLA-B*2703. AIDS 1998; 12(11):1391–3.

    Article  PubMed  CAS  Google Scholar 

  8. Risch N. Linkage strategies for genetically complex traits I. Multilocus models. Am J Hum Genet 1990; 46(2):222–8.

    PubMed  CAS  Google Scholar 

  9. Brown MA, Laval SH, Brophy S et al. Recurrence risk modelling of the genetic susceptibility to ankylosing spondylitis. Ann Rheum Dis 2000; 59(11):883–6.

    Article  PubMed  CAS  Google Scholar 

  10. Lander ES, Botstein D., Strategies for studying heterogeneous genetic traits in humans by using a linkage map of restriction fragment length polymorphisms. Proc Natl Acad Sci USA 1986; 83(19):7353–7.

    Article  PubMed  CAS  Google Scholar 

  11. Hugor JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001; 411(6837):599–603.

    Article  Google Scholar 

  12. Laurin N, Brown JP, Morissette J et al. Recurrent mutation fo the gene encoding sequesstosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet 2002; 70(6):1582–8.

    Article  PubMed  CAS  Google Scholar 

  13. Ferrari SL, Deutsch S, Choudhury U et al. Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size and stature in whites. Am J Hum Genet 2004; 74(5):866–75.

    Article  PubMed  CAS  Google Scholar 

  14. Koay M, Woon P-Y, Zhuang Y et al. Influence of LRP5 polymorphisms on normal variation in BMD. Journal of Bone and Mineral Research 2004; 19(10):1619–1627.

    Article  PubMed  CAS  Google Scholar 

  15. Little R, Carulli J, Del Mastro R et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 2002; 70:11–19.

    Article  PubMed  CAS  Google Scholar 

  16. Consortium WTCC. Genomewide association study of 14,000 cases of seven common diseases and 3000 controls. Nature 2007; 447:661–83.

    Article  Google Scholar 

  17. Zhang G, Luo J, Bruckel J et al. Genetic studies in familial ankylosing spondylitis susceptibility. Arthritis Rheum 2004; 50(7):2246–54.

    Article  PubMed  CAS  Google Scholar 

  18. Miceli-Richard C, Zouali H, Said-Nahal R et al. Significant linkage to spondyloarthropathy on 9q31-34. Hum Mol Genet 2004; 13(15):1641–8.

    Article  PubMed  CAS  Google Scholar 

  19. Laval SH, Timms A, Edwards S et al. Whole-genome screening in ankylosing spondylitis: evidence of nonMHC genetic-susceptibility loci. Am J Hum Genet 2001; 68(4):918–26.

    Article  PubMed  CAS  Google Scholar 

  20. Brown MA, Pile KD, Kennedy LG et al. A genome-wide screen for susceptibility loci in ankylosing spondylitis. Arthritis Rheum 1998; 41(4):588–95.

    Article  PubMed  CAS  Google Scholar 

  21. Carter KW, Pluzhnikov A, Timms AE et al. Combined analysis of three whole genome linkage scans for Ankylosing Spondylitis. Rheumatology (Oxford) 2007; 46(5):763–71.

    Article  CAS  Google Scholar 

  22. Timms AE, Crane AM, Sims AM et al. The interleukin 1 gene cluster contains a major susceptibility locus for ankylosing spondylitis. Am J Hum Genet 2004; 75(4):587–95.

    Article  PubMed  CAS  Google Scholar 

  23. van der Paardt M, Crusius JB, Garcia-Gonzalez MA et al. Interleukin-1beta and interleukin-1 receptor antagonist gene polymorphisms in ankylosing spondylitis. Rheumatology (Oxford) 2001; 41(12):1419–23.

    Article  Google Scholar 

  24. McGarry F, Neilly J, Anderson N et al. A polymorphism within the interleukin 1 receptor antagonist (IL-1Ra) gene is associated with ankylosing spondylitis. Rheumatology (Oxford) 2001; 40 12):1359–64.

    Article  CAS  Google Scholar 

  25. Chou CT, Timms AE, Wei JC et al. Replication of association of IL1 gene complex members with ankylosing spondylitis in taiwanese chinese. Ann Rheum Dis 2006; 65(8):1106–9.

    Article  PubMed  CAS  Google Scholar 

  26. Brown MA, Edwards S, Hoyle E et al. Polymorphisms of the CYP2D6 gene increase susceptibility to ankylosing spondylitis. Hum Mol Genet 2000; 9(11):1563–6.

    Article  PubMed  CAS  Google Scholar 

  27. Beyeler C, Armstrong M, Bird HA et al. Relationship between genotype for the cytochrome P450 CYP2D6 and susceptibility to ankylosing spondylitis and rheumatoid arthritis. Ann Rheum Dis 1996; 55(1):66–8.

    Article  PubMed  CAS  Google Scholar 

  28. WTCCC, TASC. A genome-wide scan of 14,000 nonsynonymous coding SNPs in 5,500 individuals: The Wellcome Trust Case Control Consortium. Nat Genet 2007; 39(11):1329–37.

    Article  Google Scholar 

  29. Park H, Li Z, Yang XO et al. A distinct lineage of CD4 T-cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6(11):1133–41.

    Article  PubMed  CAS  Google Scholar 

  30. Cua DJ, Sherlock J, Chen Y et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003; 421(6924):744–8.

    Article  PubMed  CAS  Google Scholar 

  31. Murphy CA, Langrish CL, Chen Y et al. Divergent pro-and anti-inflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 2003; 198(12):1951–7.

    Article  PubMed  CAS  Google Scholar 

  32. Duerr RH, Taylor KD, Brant SR et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314(5804):1461–3.

    Article  PubMed  CAS  Google Scholar 

  33. Tremelling M, Cummings F, Fisher SA et al. IL23R variation determines susceptibility but not disease phenotype in inflammatory bowel disease. Gastroenterology 2007; 132(5):1657–1664.

    Article  PubMed  CAS  Google Scholar 

  34. Cargill M, Schrodi S, Chang M et al. A large-scale genetic assocation study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet 2007; 80(2): 273–290.

    Article  PubMed  CAS  Google Scholar 

  35. Reveille JD, Zhou X, McGinnis R et al. Interleukin-23 receptor polymorphisms are a major determinant of susceptibility to ankylosing spondylitis. Nat Genet 2007; Submitted.

    Google Scholar 

  36. de Vlam K, Mielants H, Cuvelier C et al. Spondyloarthropathy is underestimated in inflammatory bowel disease: prevalence and HlA association. J Rheumatol 2000; 27(12):2860–5.

    PubMed  Google Scholar 

  37. Palm O, Moum B, Ongre A et al. Prevalence of ankylosing spondylitis and other spondyloarthropathies among patients with inflammatory bowel disease: a population study (the IBSEN study). J Rheumatol 2002; 29(3):511–5.

    PubMed  Google Scholar 

  38. Salvarani C, Vlachonikolis IG, van der Heijde DM et al. Musculoskeletal manifestations in a population-based cohort of inflammatory bowel disease patients. Scand J Gastroenterol 2001; 3612):1307–13.

    Article  PubMed  CAS  Google Scholar 

  39. Scarpa R, del Puente A, D’Arienzo A et al. The arthritis of ulcerative colitis: clinical and genetic aspects. J Rheumatol 1992: 19(3):373–7.

    PubMed  CAS  Google Scholar 

  40. Steer S, Jones H, Hibbert J et al. Low back pain, sacroiliitis and the relationship with HLA-B27 in Crohn’s disease. J Rheumatol 2003; 30(3):518–22.

    PubMed  Google Scholar 

  41. Thjodleifsson B, Geirsson AJ, Bjornsson S et al. A common genetic background for inflammatory bowel disease and ankylosing spondylitis: a genealogic study in Iceland. Arthritis Rheum 2007; 56(8):2633–9.

    Article  PubMed  Google Scholar 

  42. Hammer GE, Gonzalez F, Champsaur M et al. The aminopeptidase ERAAP shapes the peptide repertoire displayed by major histocompatibility complex class I molecules. Nat Immunol 2006; 7(1):103–12.

    Article  PubMed  CAS  Google Scholar 

  43. Kanaseki T, Blanchard N, Hammer GE et al. ERAAP synergizes with MHC class I molecules to make the final cut in the antigenic peptide precursors in the endoplasmic reticulum. Immunity 2006; 25(5):795–806.

    Article  PubMed  CAS  Google Scholar 

  44. Cui X, Rouhani FN, Hawari F et al. Shedding of the type II IL-1 decoy receptor requires a multifunctional aminopeptidase, aminopeptidase regulator of TNF receptor type 1 shedding. J Immunol 2003; 171(12):6814–9.

    PubMed  CAS  Google Scholar 

  45. Cui X, Rouhani FN, Hawari F et al. An aminopeptidase, ARTS-1, is required for interleukin-6 receptor shedding. J Biol Chem 2003; 278(31):28677–85.

    Article  PubMed  CAS  Google Scholar 

  46. Cui X, Hawari F, Alsaaty S et al. Identification of ARTS-1 as a novel TNFR1-binding protein that promotes TNFR1 ectodomain shedding. J Clin Invest 2002; 110(4):515–26.

    PubMed  CAS  Google Scholar 

  47. Vazquez-Del MM, Garcia-Gonzalez A, Munoz-Valle JF et al. Interleukin 1beta (IL-1beta), IL-10, tumor necrosis factor-alpha and cellular proliferation index in peripheral blood mononuclear cells in patients with ankylosing spondylitis. J Rheumatol 2002; 29(3):522–6.

    Google Scholar 

  48. Maksymowych WP, Rahman P, Reeve JP et al. Association of the IL1 gene cluster with susceptibility to ankylosing spondylitis: an analysis of three canadian populations. Arthritis Rheum 2006; 54(3):974–85.

    Article  PubMed  CAS  Google Scholar 

  49. Rahman P, Sun S, Peddle L et al. Assocation between the interleukin-1 family gene cluster and psoriatic arthritis. Arthritis Rheum 2006; 54(7):2321–5.

    Article  PubMed  CAS  Google Scholar 

  50. Sims A-M, Timms A, Bruges Armas J et al. Prospective meta-analysis of IL-1 gene complex polymorphisms confirms associations with ankylosing spondylitis. Ann Rheum Dis 2007; Submitted.

    Google Scholar 

  51. Timms AE, Zhang Y, Bradbury L et al. Investigation of the role of ANKH in ankylosing spondylitis. Arthritis Rheum 2003; 48(10):2898–902.

    Article  PubMed  CAS  Google Scholar 

  52. Tsui FW, Tsui HW, Cheng EY et al. Novel genetic markers in the 5′-flanking region of ANKH are associated with ankylosing spondylitis. Arthritis Rheum 2003; 48(3):791–7.

    Article  PubMed  CAS  Google Scholar 

  53. Adam R, Sturrock RD, Gracie JA. TLR4 mutations (Asp 299Gly and Thr399Ile) are not associated with ankylosing spondylitis. Ann Rheum Dis 2006; 65(8):1099–101.

    Article  PubMed  CAS  Google Scholar 

  54. Gergely P Jr, Blazsek A, Weiszhar Z et al. Lack of genetic association of the Toll-like receptor 4 (TLR4) Asp299Gly and Thr399Ile polymorphisms with spondylarthropathies in a Hungarian population. Rheumatology (Oxford) 2006; 45(10):1194–6.

    Article  CAS  Google Scholar 

  55. Snelgrove T, Lim S, Greenwood C et al. Association of toll-like receptor 4 variants and ankylosing spondylitis: a case-control study. J Rheumatol 2007; 34(2):368–70.

    PubMed  CAS  Google Scholar 

  56. van der Paardt M, Crusius JB, de Koning MH et al. No evidence for involvement of the Toll-like receptor 4 (TLR4) A896G and CD14-C260T polymorphisms in susceptibility to ankylosing spondylitis. Ann Rheum Dis 2005; 64(2):235–8.

    Article  PubMed  Google Scholar 

  57. Crane AM, Bradbury L, van Heel DA et al. Role of NOD2 variants in spondylarthritis. Arthritis Rheum 2002; 46(6):1629–33.

    Article  PubMed  CAS  Google Scholar 

  58. Miceli-Richard C, Zouali H, Lesage S et al. CARD15/NOD2 analyses in spondylarthropathy. Arthritis Rheum 2002; 46(5):1405–6.

    Article  PubMed  CAS  Google Scholar 

  59. van der Paardt M, Cruisusi JB, de Koning MH et al. CARD15 gene mutations are not associated with ankylosing spondylitis. Genes Immun 2003; 4(1):77–8.

    Article  PubMed  Google Scholar 

  60. van Heel DA, McGovern DP, Cardon LR et al. Fine mapping of the IBD1 locus did not identify Crohn disease-associated NOD2 variants: implications for complex disease genetics. Am J Med Genet 2002; 111(3):253–9.

    Article  PubMed  Google Scholar 

  61. van Heel DA, Dechairo BM, Dawson G et al. The IBD6 Crohn’s disease locus demonstrates complex interactions with CARD15 and IBD5 disease-associated variants. Hum Mol Genet 2003; 12(20):2569–75.

    Article  PubMed  Google Scholar 

  62. D’Amato M. The Crohn’s associated NOD2 3020InsC frameshift mutation does not confer susceptibility to ankylosing spondylitis. J Rheumatol 2002; 29(11):2470–1.

    PubMed  Google Scholar 

  63. Ferreiros-Vidal I, Amarelo J, Barros F et al. Lack of association of ankylosing spondylitis with the most common NOD2 susceptibility alleles to Crohn’s disease. J Rheumatol 2003; 30(1):102–4.

    PubMed  CAS  Google Scholar 

  64. Peeters H, Vander Cruyssen B, Laukens D et al. Radiological sacroilitis, a hallmark of spondylitis, is linked with CARD15 gene polymorphisms in patients with Crohn’s disease. Ann Rheum Dis 2004; 63(9):1131–4.

    Article  PubMed  CAS  Google Scholar 

  65. Kim TH, Rahman P, Jun JB et al. Analysis of CARD15 polymorphisms in Korean patients with ankylosing spondylitis reveals absence of common variants seen in western populations. J Rheumatol 2004; 31(10):1959–61.

    PubMed  CAS  Google Scholar 

  66. Lopez-Larrea C, Blanco-Gelaz MA, Torre-Alonso JC et al. Contribution of KIR3DL1/3DS1 to ankylosing spondylitis in human leukocyte antigen-B27 Caucasian populations. Arthritis Res Ther 2006; 8(4):R101.

    Article  PubMed  Google Scholar 

  67. Brown MA, Pile KD, Kennedy LG et al. HLA class I associations of ankylosing spondylitis in the white population in the United Kingdom. Ann Rheum Dis 1996; 55(4):268–70.

    Article  PubMed  CAS  Google Scholar 

  68. Robinson WP, van der Linden SM, Khan MA et al. HLA-Bw60 increases susceptibility to ankylosing spondylitis in HLA-B27+ patients. Arthritis Rheum 1989; 32(9):1135–41.

    Article  PubMed  CAS  Google Scholar 

  69. Wei JC, Tsai WC, Lin HS et al. HLA-B60 and B61 are strongly associated with ankylosing spondylitis in HLA-B27-negative Taiwan Chinese patients. Rheumatology (Oxford) 2004; 43(7):839–42.

    Article  CAS  Google Scholar 

  70. Brown MA, Kennedy LG, Darke C et al. The effect of HLA-DR genes on susceptibility to and severity of ankylosing spondylitis. Arthritis Rheum 1998; 41(3):460–5.

    Article  PubMed  CAS  Google Scholar 

  71. Ploski R, Maksymowych W, Forre O. HLA-DR8 and susceptibility to acute anterior uveitis in ankylosing spondylitis: comment on the article by Monowarul Islam et al. Arthritis Rheum 1996; 39(2):351–2.

    Article  PubMed  CAS  Google Scholar 

  72. Monowarul ISlam SM, Numaga J, Fujino Y et al. HLA-DR8 and acute anterior uveitis in ankylosing spondylitis. Arthritis Rheum 1995; 38(4):547–50.

    Article  PubMed  CAS  Google Scholar 

  73. Sims AM, Wordsworth BP, Brown MA. Genetic susceptibility to ankylosing spondylitis. Curr Mol Med 2004 4(1):13–20.

    Article  PubMed  CAS  Google Scholar 

  74. D’Amato M, Fiorillo MT, Carcassi C et al. Relevance of residue 116 of HLA-B27 in determining susceptibility to ankylosing spondylitis. Eur J Immunol 1995; 25(11):3199–201.

    Article  PubMed  Google Scholar 

  75. Sims AM, Barnardo M, Herzberg I et al. Non B27 MHC associations of ankylosing spondylitis. Genes Immun 2007; 8(2):115–23.

    Article  PubMed  CAS  Google Scholar 

  76. Miettinen OS. Proportion of disease caused or prevented by a given exposure, trait or intervention. Am J Epidemiol 1974; 99 (5):325–32.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Brown, M.A. (2009). Genomewide Screens in Ankylosing Spondylitis. In: López-Larrea, C., Díaz-Peña, R. (eds) Molecular Mechanisms of Spondyloarthropathies. Advances in Experimental Medicine and Biology, vol 649. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0298-6_11

Download citation

Publish with us

Policies and ethics