Skip to main content

Molecular Pathways and Mechanisms Regulating the Recombination of Immunoglobulin Genes during B-Lymphocyte Development

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((volume 650))

Abstract

The hallmark of B-cell development is the ordered recombination of immunoglobulin (Ig) genes. Recently, considerable progress has been achieved in assembling gene regulatory networks comprised of signaling components and transcription factors that regulate B-cell development. In this chapter we synthesize experimental evidence to explain how such signaling pathways and transcription factors can orchestrate the ordered recombination of immunoglobulin (Ig) genes. Recombination of antigen-receptor loci is regulated both by the developmentally controlled expression of the Rag1 and Rag2 genes and the accessibility of particular loci and their gene segments to recombination. A new framework has emerged that invokes nuclear compartmentalization, large-scale chromatin dynamics and localized changes in chromatin structure in regulating the accessibility of Ig loci at specific stages of B-cell development. We review this emergent framework and discuss new experimental approaches that will be needed to explore the underlying molecular mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Igarashi H, Gregory SC, Yokota T et al. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 2002; 17(2):117–130.

    Article  CAS  PubMed  Google Scholar 

  2. Allman D, Miller JP. Common lymphoid progenitors, early B-lineage precursors and IL-7: characterizing the trophic and instructive signals underlying early B-cell development. Immunol Res 2003; 27(2–3):131–140.

    Article  CAS  PubMed  Google Scholar 

  3. Li YS, Hayakawa K, Hardy RR. The regulated expression of B-lineage associated genes during B-cell differentiation in bone marrow and fetal liver. J Exp Med 1993; 178(3):951–960.

    Article  CAS  PubMed  Google Scholar 

  4. Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromosomal V(D)J recombination. Cell 2002; 109 Suppl:S45–55.

    Google Scholar 

  5. Geier JK, Schlissel MS. Pre-BCR signals and the control of Ig gene rearrangements. Semin Immunol 2006; 18(1):31–39.

    Article  CAS  PubMed  Google Scholar 

  6. Lin H, Grosschedl R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 1995; 376(6537):263–267.

    Article  CAS  PubMed  Google Scholar 

  7. Li Z, Dordai DI, Lee J et al. A conserved degradation signal regulates RAG-2 accumulation during cell division and links V(D)J recombination to the cell cycle. Immunity 1996; 5(6):575–589.

    Article  PubMed  Google Scholar 

  8. Golding A, Chandler S, Ballestar E et al. Nucleosome structure completely inhibits in vitro cleavage by the V(D)J recombinase. EMBO J 1999; 18(13):3712–3723.

    Article  CAS  PubMed  Google Scholar 

  9. Kwon J, Imbalzano AN, Matthews A et al. Accessibility of nucleosomal DNA to V(D)J cleavage is modulated by RSS positioning and HMG1. Mol Cell 1998; 2(6):829–839.

    Article  CAS  PubMed  Google Scholar 

  10. Krangel MS. Gene segment selection in V(D)J recombination: accessibility and beyond. Nat Immunol 2003; 4(7):624–630.

    Article  CAS  PubMed  Google Scholar 

  11. Matthews AG, Kuo AJ, Ramon-Maiques S et al. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 2007; 450(7172):1106–1110.

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Subrahmanyam R, Chakraborty T et al. A plant homeodomain in RAG-2 that binds Hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity 2007; 27(4):561–571.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Z, Espinoza CR, Yu Z et al. Transcription factor Pax5 (BSAP) transactivates the RAG-mediated V(H)-to-DJ(H) rearrangement of immunoglobulin genes. Nat Immunol 2006; 7(6):616–624.

    Article  CAS  PubMed  Google Scholar 

  14. Kosak ST, Skok JA, Medina KL et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 2002; 296(5565):158–162.

    Article  CAS  PubMed  Google Scholar 

  15. Skok JA, Brown KE, Azuara V et al. Nonequivalent nuclear location of immunoglobulin alleles in B-lymphocytes. Nat Immunol 2001; 2(9):848.

    Article  CAS  PubMed  Google Scholar 

  16. Reddy KL, Zullo JM, Bertolino E et al. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 2008; 452(7184):243–247.

    Article  CAS  PubMed  Google Scholar 

  17. Fuxa M, Skok J, Souabni A et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev 2004; 18(4):411–422.

    Article  CAS  PubMed  Google Scholar 

  18. Sayegh C, Jhunjhunwala S, Riblet R et al. Visualization of looping involving the immunoglobulin heavy-chain locus in developing B-cells. Genes Dev 2005; 19(3):322–327.

    Article  CAS  PubMed  Google Scholar 

  19. Medina KL, Singh H. Gene regulatory networks orchestrating B-cell fate specification, commitment and differentiation. Curr Top Microbiol Immunol 2005; 290:1–14.

    Article  CAS  PubMed  Google Scholar 

  20. Bain G, Maandag EC, Izon DJ et al. E2A proteins are required for proper B-cell development and initiation of immunoglobulin gene rearrangements. Cell 1994; 79(5):885–892.

    Article  CAS  PubMed  Google Scholar 

  21. Zhuang Y, Soriano P, Weintraub H. The helix-loop-helix gene E2A is required for B-cell formation. Cell 1994; 79(5):875–884.

    Article  CAS  PubMed  Google Scholar 

  22. Lin WC, Desiderio S. V(D)J recombination and the cell cycle. Immunol Today 1995; 16(6):279–289.

    Article  CAS  PubMed  Google Scholar 

  23. Romanow WJ, Langerak AW, Goebel P et al. E2A and EBF act in synergy with the V(D)J recombinase to generate a diverse immunoglobulin repertoire in nonlymphoid cells. Mol Cell 2000; 5(2):343–353.

    Article  CAS  PubMed  Google Scholar 

  24. Seet CS, Brumbaugh RL, Kee BL. Early B-cell factor promotes B-lymphopoiesis with reduced interleukin 7 responsiveness in the absence of E2A. J Exp Med 2004; 199(12):1689–1700.

    Article  CAS  PubMed  Google Scholar 

  25. Pongubala JM, Northrup DL, Lancki DW et al. Transcription factor EBF restricts alternative lineage options and promotes B-cell fate commitment independently of Pax5. Nat Immunol 2008; 9(2):203–215.

    Article  CAS  PubMed  Google Scholar 

  26. Chowdhury D, Sen R. Stepwise activation of the immunoglobulin mu heavy chain gene locus. EMBO J 2001; 20(22):6394–6403.

    Article  CAS  PubMed  Google Scholar 

  27. Bates JG, Cado D, Nolla H et al. Chromosomal position of a VH gene segment determines its activation and inactivation as a substrate for V(D)J recombination. J Exp Med 2007; 204(13):3247–3256.

    Article  CAS  PubMed  Google Scholar 

  28. Chakraborty T, Chowdhury D, Keyes A et al. Repeat organization and epigenetic regulation of the DH-Cmu domain of the immunoglobulin heavy-chain gene locus. Mol Cell 2007; 27(5):842–850.

    Article  CAS  PubMed  Google Scholar 

  29. Bolland DJ, Wood AL, Afshar R et al. Antisense intergenic transcription precedes Igh D-to-J recombination and is controlled by the intronic enhancer Emu. Mol Cell Biol 2007; 27(15):5523–5533.

    Article  CAS  PubMed  Google Scholar 

  30. Afshar R, Pierce S, Bolland DJ et al. Regulation of IgH gene assembly: role of the intronic enhancer and 5′DQ52 region in targeting DHJH recombination. J Immunol 2006; 176(4):2439–2447.

    CAS  PubMed  Google Scholar 

  31. Chakalova L, Debrand E, Mitchell JA et al. Replication and transcription: shaping the landscape of the genome. Nat Rev Genet 2005; 6(9):669–677.

    Article  CAS  PubMed  Google Scholar 

  32. Yang Q, Riblet R, Schildkraut CL. Sites that direct nuclear compartmentalization are near the 5′ end of the mouse immunoglobulin heavy-chain locus. Mol Cell Biol 2005; 25(14):6021–6030.

    Article  CAS  PubMed  Google Scholar 

  33. Kikuchi K, Lai AY, Hsu CL et al. IL-7 receptor signaling is necessary for stage transition in adult B-cell development through up-regulation of EBF. J Exp Med 2005; 201(8):1197–1203.

    Article  CAS  PubMed  Google Scholar 

  34. Dias S, Silva H Jr, Cumano A et al. Interleukin-7 is necessary to maintain the B-cell potential in common lymphoid progenitors. J Exp Med 2005; 201(6):971–979.

    Article  CAS  PubMed  Google Scholar 

  35. Busslinger M. Transcriptional control of early B-cell development. Annu Rev Immunol 2004; 22:55–79.

    Article  CAS  PubMed  Google Scholar 

  36. Chevillard C, Ozaki J, Herring CD et al. A three-megabase yeast artificial chromosome contig spanning the C57BL mouse Igh locus. J Immunol 2002; 168(11):5659–5666.

    CAS  PubMed  Google Scholar 

  37. Johnston CM, Wood AL, Bolland DJ et al. Complete sequence assembly and characterization of the C57BL/6 mouse Ig heavy chain V region. J Immunol 2006; 176(7):4221–4234.

    CAS  PubMed  Google Scholar 

  38. Yancopoulos GD, Desiderio SV, Paskind M et al. Preferential utilization of the most JH-proximal VH gene segments in pre-B-cell lines. Nature 1984; 311(5988):727–733.

    Article  CAS  PubMed  Google Scholar 

  39. Jeong HD, Teale JM. VH gene family repertoire of resting B-cells. Preferential use of D-proximal families early in development may be due to distinct B-cell subsets. J Immunol 1989; 143(8):2752–2760.

    CAS  PubMed  Google Scholar 

  40. Malynn BA, Yancopoulos GD, Barth JE et al. Biased expression of JH-proximal VH genes occurs in the newly generated repertoire of neonatal and adult mice. J Exp Med 1990; 171(3):843–859.

    Article  CAS  PubMed  Google Scholar 

  41. Ten Boekel E, Melchers F, Rolink AG. Changes in the V(H) gene repertoire of developing precursor B-lymphocytes in mouse bone marrow mediated by the pre-B-cell receptor. Immunity 1997; 7(3):357–368.

    Article  PubMed  Google Scholar 

  42. Corcoran AE, Riddell A, Krooshoop D et al. Impaired immunoglobulin gene rearrangement in mice lacking the IL-7 receptor. Nature 1998; 391(6670):904–907.

    Article  CAS  PubMed  Google Scholar 

  43. Bertolino E, Reddy K, Medina KL et al. Regulation of interleukin 7-dependent immunoglobulin heavy-chain variable gene rearrangements by transcription factor STAT5. Nat Immunol 2005; 6(8):836–843.

    Article  CAS  PubMed  Google Scholar 

  44. Johnson K, Angelin-Duclos C, Park S et al. Changes in histone acetylation are associated with differences in accessibility of V(H) gene segments to V-DJ recombination during B-cell ontogeny and development. Mol Cell Biol 2003; 23(7):2438–2450.

    Article  CAS  PubMed  Google Scholar 

  45. Nutt SL, Heavey B, Rolink AG et al. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 1999; 401(6753):556–562.

    Article  CAS  PubMed  Google Scholar 

  46. Hesslein DG, Pflugh DL, Chowdhury D et al. Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments. Genes Dev 2003; 17(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  47. Johnson K, Pflugh DL, Yu D et al. B-cell-specific loss of histone 3 lysine 9 methylation in the V(H) locus depends on Pax5. Nat Immunol 2004; 5(8):853–861.

    Article  CAS  PubMed  Google Scholar 

  48. Hsu LY, Liang HE, Johnson K et al. Pax5 activates immunoglobulin heavy chain V to DJ rearrangement in transgenic thymocytes. J Exp Med 2004; 199(6):825–830.

    Article  CAS  PubMed  Google Scholar 

  49. Liu H, Schmidt-Supprian M, Shi Y et al. Yin Yang 1 is a critical regulator of B-cell development. Genes Dev 2007; 21(10):1179–1189.

    Article  CAS  PubMed  Google Scholar 

  50. Curry JD, Geier JK, Schlissel MS. Single-strand recombination signal sequence nicks in vivo: evidence for a capture model of synapsis. Nat Immunol 2005; 6(12):1272–1279.

    Article  CAS  PubMed  Google Scholar 

  51. Su IH, Basavaraj A, Krutchinsky AN et al. Ezh2 controls B-cell development through histone H3 methylation and Igh rearrangement. Nat Immunol 2003; 4(2):124–131.

    Article  CAS  PubMed  Google Scholar 

  52. Osipovich O, Milley R, Meade A et al. Targeted inhibition of V(D)J recombination by a histone methyltransferase. Nat Immunol 2004; 5(3):309–316.

    Article  CAS  PubMed  Google Scholar 

  53. Bolland DJ, Wood AL, Johnston CM et al. Antisense intergenic transcription in V(D)J recombination. Nat Immunol 2004; 5(6):630–637.

    Article  CAS  PubMed  Google Scholar 

  54. Jhunjhunwala S, van Zelm MC, Peak MM et al. The 3D structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions. Cell 2008; 133(2):265–279.

    Article  CAS  PubMed  Google Scholar 

  55. Rolink AG, Winkler T, Melchers F et al. Precursor B-cell receptor-dependent B-cell proliferation and differentiation does not require the bone marrow or fetal liver environment. J Exp Med 2000; 191(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  56. Tokoyoda K, Egawa T, Sugiyama T et al. Cellular niches controlling B-lymphocyte behavior within bone marrow during development. Immunity 2004; 20(6):707–718.

    Article  CAS  PubMed  Google Scholar 

  57. McGuire KL, Vitetta ES. kappa/lambda Shifts do not occur during maturation of murine B-cells. J Immunol 1981; 127(4):1670–1673.

    CAS  PubMed  Google Scholar 

  58. Johnson K, Hashimshony T, Sawai CM et al. Regulation of Immunoglobulin Light-Chain Recombination by the Transcription Factor IRF-4 and the Attenuation of Interleukin-7 Signaling. Immunity 2008; 28(3):335–345.

    Article  CAS  PubMed  Google Scholar 

  59. Lazorchak AS, Schlissel MS, Zhuang Y. E2A and IRF-4/Pip promote chromatin modification and transcription of the immunoglobulin kappa locus in pre-B-cells. Mol Cell Biol 2006; 26(3):810–821.

    Article  CAS  PubMed  Google Scholar 

  60. Lu R, Medina KL, Lancki DW et al. IRF-4,8 orchestrate the pre-B-to-B transition in lymphocyte development. Genes Dev 2003; 17(14):1703–1708.

    Article  CAS  PubMed  Google Scholar 

  61. Sato H, Saito-Ohara F, Inazawa J et al. Pax-5 is essential for kappa sterile transcription during Ig kappa chain gene rearrangement. J Immunol 2004; 172(8):4858–4865.

    CAS  PubMed  Google Scholar 

  62. Shaffer AL, Peng A, Schlissel MS. In vivo occupancy of the kappa light chain enhancers in primary pro-and pre-B-cells: a model for kappa locus activation. Immunity 1997; 6(2):131–143.

    Article  CAS  PubMed  Google Scholar 

  63. Muljo SA, Schlissel MS. A small molecule Abl kinase inhibitor induces differentiation of Abelson virus-transformed pre-B-cell lines. Nat Immunol 2003; 4(1):31–37.

    Article  CAS  PubMed  Google Scholar 

  64. Thompson EC, Cobb BS, Sabbattini P et al. Ikaros DNA-binding proteins as integral components of B-cell developmental-stage-specific regulatory circuits. Immunity 2007; 26(3):335–344.

    Article  CAS  PubMed  Google Scholar 

  65. Spanopoulou E, Roman CA, Corcoran LM et al. Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice. Genes Dev 1994; 8(9):1030–1042.

    Article  CAS  PubMed  Google Scholar 

  66. Young F, Ardman B, Shinkai Y et al. Influence of immunoglobulin heavy-and light-chain expression on B-cell differentiation. Genes Dev 1994; 8(9):1043–1057.

    Article  CAS  PubMed  Google Scholar 

  67. Stanhope-Baker P, Hudson KM, Shaffer AL et al. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell 1996; 85(6):887–897.

    Article  CAS  PubMed  Google Scholar 

  68. Shaw AC, Swat W, Davidson L et al. Induction of Ig light chain gene rearrangement in heavy chaindeficient B-cells by activated Ras. Proc Natl Acad Sci USA 1999; 96(5):2239–2243.

    Article  CAS  PubMed  Google Scholar 

  69. Flemming A, Brummer T, Reth M et al. The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B-cell expansion. Nat Immunol 2003; 4(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  70. Xu S, Lee KG, Huo J et al. Combined deficiencies in Bruton tyrosine kinase and phospholipase Cgamma2 arrest B-cell development at a pre-BCR + stage. Blood 2007; 109(8):3377–3384.

    Article  CAS  PubMed  Google Scholar 

  71. Ma S, Turetsky A, Trinh L et al. IFN regulatory factor 4 and 8 promote Ig light chain kappa locus activation in pre-B-cell development. J Immunol 2006; 177(11):7898–7904.

    CAS  PubMed  Google Scholar 

  72. Grawunder U, Haasner D, Melchers F et al. Rearrangement and expression of kappa light chain genes can occur without mu heavy chain expression during differentiation of pre-B-cells. Int Immunol 1993; 5(12):1609–1618.

    Article  CAS  PubMed  Google Scholar 

  73. Milne CD, Fleming HE, Paige CJ. IL-7 does not prevent pro-B/pre-B-cell maturation to the immature/sIgM(+) stage. Eur J Immunol 2004; 34(10):2647–2655.

    Article  CAS  PubMed  Google Scholar 

  74. Coleclough C, Perry RP, Karjalainen K et al. Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expression. Nature 1981; 290(5805):372–378.

    Article  CAS  PubMed  Google Scholar 

  75. Schlissel MS. Regulation of activation and recombination of the murine Igkappa locus. Immunol Rev 2004; 200:215–223.

    Article  CAS  PubMed  Google Scholar 

  76. Liang HE, Hsu LY, Cado D et al. Variegated transcriptional activation of the immunoglobulin kappa locus in pre-B-cells contributes to the allelic exclusion of light-chain expression. Cell 2004; 118(1):19–29.

    Article  CAS  PubMed  Google Scholar 

  77. Mostoslavsky R, Singh N, Tenzen T et al. Asynchronous replication and allelic exclusion in the immune system. Nature 2001; 414(6860):221–225.

    Article  CAS  PubMed  Google Scholar 

  78. Mostoslavsky R, Kirillov A, Ji YH et al. Demethylation and the establishment of kappa allelic exclusion. Cold Spring Harb Symp Quant Biol 1999; 64:197–206.

    Article  CAS  PubMed  Google Scholar 

  79. Goldmit M, Schlissel M, Cedar H et al. Differential accessibility at the kappa chain locus plays a role in allelic exclusion. EMBO J 2002; 21(19):5255–5261.

    Article  CAS  PubMed  Google Scholar 

  80. Goldmit M, Ji Y, Skok J et al. Epigenetic ontogeny of the Igk locus during B-cell development. Nat Immunol 2005; 6(2):198–203.

    Article  CAS  PubMed  Google Scholar 

  81. Liu Z, Widlak P, Zou Y et al. A recombination silencer that specifies heterochromatin positioning and ikaros association in the immunoglobulin kappa locus. Immunity 2006; 24(4):405–415.

    Article  PubMed  Google Scholar 

  82. Chowdhury D, Sen R. Transient IL-7/IL-7R signaling provides a mechanism for feedback inhibition of immunoglobulin heavy chain gene rearrangements. Immunity 2003; 18(2):229–241.

    Article  CAS  PubMed  Google Scholar 

  83. Roldan E, Fuxa M, Chong W et al. Locus ‘deconstraction’ and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat Immunol 2005; 6(1):31–41.

    Article  CAS  PubMed  Google Scholar 

  84. Hewitt SL, Farmer D, Marszalek K et al. Association between the Igk and Igh immunoglobulin loci mediated by the 3′ Igk enhancer induces ‘decontraction’ of the Igh locus in pre-B-cells. Nat Immunol 2008; 9(4):396–404.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harinder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Johnson, K., Reddy, K.L., Singh, H. (2009). Molecular Pathways and Mechanisms Regulating the Recombination of Immunoglobulin Genes during B-Lymphocyte Development. In: Ferrier, P. (eds) V(D)J Recombination. Advances in Experimental Medicine and Biology, vol 650. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0296-2_11

Download citation

Publish with us

Policies and ethics