Molecular Pathways and Mechanisms Regulating the Recombination of Immunoglobulin Genes during B-Lymphocyte Development

Part of the Advances in Experimental Medicine and Biology book series (volume 650)

Abstract

The hallmark of B-cell development is the ordered recombination of immunoglobulin (Ig) genes. Recently, considerable progress has been achieved in assembling gene regulatory networks comprised of signaling components and transcription factors that regulate B-cell development. In this chapter we synthesize experimental evidence to explain how such signaling pathways and transcription factors can orchestrate the ordered recombination of immunoglobulin (Ig) genes. Recombination of antigen-receptor loci is regulated both by the developmentally controlled expression of the Rag1 and Rag2 genes and the accessibility of particular loci and their gene segments to recombination. A new framework has emerged that invokes nuclear compartmentalization, large-scale chromatin dynamics and localized changes in chromatin structure in regulating the accessibility of Ig loci at specific stages of B-cell development. We review this emergent framework and discuss new experimental approaches that will be needed to explore the underlying molecular mechanisms.

Keywords

Zinc Migration Attenuation Tyrosine Recombination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Igarashi H, Gregory SC, Yokota T et al. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 2002; 17(2):117–130.CrossRefPubMedGoogle Scholar
  2. 2.
    Allman D, Miller JP. Common lymphoid progenitors, early B-lineage precursors and IL-7: characterizing the trophic and instructive signals underlying early B-cell development. Immunol Res 2003; 27(2–3):131–140.CrossRefPubMedGoogle Scholar
  3. 3.
    Li YS, Hayakawa K, Hardy RR. The regulated expression of B-lineage associated genes during B-cell differentiation in bone marrow and fetal liver. J Exp Med 1993; 178(3):951–960.CrossRefPubMedGoogle Scholar
  4. 4.
    Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromosomal V(D)J recombination. Cell 2002; 109 Suppl:S45–55.Google Scholar
  5. 5.
    Geier JK, Schlissel MS. Pre-BCR signals and the control of Ig gene rearrangements. Semin Immunol 2006; 18(1):31–39.CrossRefPubMedGoogle Scholar
  6. 6.
    Lin H, Grosschedl R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 1995; 376(6537):263–267.CrossRefPubMedGoogle Scholar
  7. 7.
    Li Z, Dordai DI, Lee J et al. A conserved degradation signal regulates RAG-2 accumulation during cell division and links V(D)J recombination to the cell cycle. Immunity 1996; 5(6):575–589.CrossRefPubMedGoogle Scholar
  8. 8.
    Golding A, Chandler S, Ballestar E et al. Nucleosome structure completely inhibits in vitro cleavage by the V(D)J recombinase. EMBO J 1999; 18(13):3712–3723.CrossRefPubMedGoogle Scholar
  9. 9.
    Kwon J, Imbalzano AN, Matthews A et al. Accessibility of nucleosomal DNA to V(D)J cleavage is modulated by RSS positioning and HMG1. Mol Cell 1998; 2(6):829–839.CrossRefPubMedGoogle Scholar
  10. 10.
    Krangel MS. Gene segment selection in V(D)J recombination: accessibility and beyond. Nat Immunol 2003; 4(7):624–630.CrossRefPubMedGoogle Scholar
  11. 11.
    Matthews AG, Kuo AJ, Ramon-Maiques S et al. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 2007; 450(7172):1106–1110.CrossRefPubMedGoogle Scholar
  12. 12.
    Liu Y, Subrahmanyam R, Chakraborty T et al. A plant homeodomain in RAG-2 that binds Hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity 2007; 27(4):561–571.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang Z, Espinoza CR, Yu Z et al. Transcription factor Pax5 (BSAP) transactivates the RAG-mediated V(H)-to-DJ(H) rearrangement of immunoglobulin genes. Nat Immunol 2006; 7(6):616–624.CrossRefPubMedGoogle Scholar
  14. 14.
    Kosak ST, Skok JA, Medina KL et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 2002; 296(5565):158–162.CrossRefPubMedGoogle Scholar
  15. 15.
    Skok JA, Brown KE, Azuara V et al. Nonequivalent nuclear location of immunoglobulin alleles in B-lymphocytes. Nat Immunol 2001; 2(9):848.CrossRefPubMedGoogle Scholar
  16. 16.
    Reddy KL, Zullo JM, Bertolino E et al. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 2008; 452(7184):243–247.CrossRefPubMedGoogle Scholar
  17. 17.
    Fuxa M, Skok J, Souabni A et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev 2004; 18(4):411–422.CrossRefPubMedGoogle Scholar
  18. 18.
    Sayegh C, Jhunjhunwala S, Riblet R et al. Visualization of looping involving the immunoglobulin heavy-chain locus in developing B-cells. Genes Dev 2005; 19(3):322–327.CrossRefPubMedGoogle Scholar
  19. 19.
    Medina KL, Singh H. Gene regulatory networks orchestrating B-cell fate specification, commitment and differentiation. Curr Top Microbiol Immunol 2005; 290:1–14.CrossRefPubMedGoogle Scholar
  20. 20.
    Bain G, Maandag EC, Izon DJ et al. E2A proteins are required for proper B-cell development and initiation of immunoglobulin gene rearrangements. Cell 1994; 79(5):885–892.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhuang Y, Soriano P, Weintraub H. The helix-loop-helix gene E2A is required for B-cell formation. Cell 1994; 79(5):875–884.CrossRefPubMedGoogle Scholar
  22. 22.
    Lin WC, Desiderio S. V(D)J recombination and the cell cycle. Immunol Today 1995; 16(6):279–289.CrossRefPubMedGoogle Scholar
  23. 23.
    Romanow WJ, Langerak AW, Goebel P et al. E2A and EBF act in synergy with the V(D)J recombinase to generate a diverse immunoglobulin repertoire in nonlymphoid cells. Mol Cell 2000; 5(2):343–353.CrossRefPubMedGoogle Scholar
  24. 24.
    Seet CS, Brumbaugh RL, Kee BL. Early B-cell factor promotes B-lymphopoiesis with reduced interleukin 7 responsiveness in the absence of E2A. J Exp Med 2004; 199(12):1689–1700.CrossRefPubMedGoogle Scholar
  25. 25.
    Pongubala JM, Northrup DL, Lancki DW et al. Transcription factor EBF restricts alternative lineage options and promotes B-cell fate commitment independently of Pax5. Nat Immunol 2008; 9(2):203–215.CrossRefPubMedGoogle Scholar
  26. 26.
    Chowdhury D, Sen R. Stepwise activation of the immunoglobulin mu heavy chain gene locus. EMBO J 2001; 20(22):6394–6403.CrossRefPubMedGoogle Scholar
  27. 27.
    Bates JG, Cado D, Nolla H et al. Chromosomal position of a VH gene segment determines its activation and inactivation as a substrate for V(D)J recombination. J Exp Med 2007; 204(13):3247–3256.CrossRefPubMedGoogle Scholar
  28. 28.
    Chakraborty T, Chowdhury D, Keyes A et al. Repeat organization and epigenetic regulation of the DH-Cmu domain of the immunoglobulin heavy-chain gene locus. Mol Cell 2007; 27(5):842–850.CrossRefPubMedGoogle Scholar
  29. 29.
    Bolland DJ, Wood AL, Afshar R et al. Antisense intergenic transcription precedes Igh D-to-J recombination and is controlled by the intronic enhancer Emu. Mol Cell Biol 2007; 27(15):5523–5533.CrossRefPubMedGoogle Scholar
  30. 30.
    Afshar R, Pierce S, Bolland DJ et al. Regulation of IgH gene assembly: role of the intronic enhancer and 5′DQ52 region in targeting DHJH recombination. J Immunol 2006; 176(4):2439–2447.PubMedGoogle Scholar
  31. 31.
    Chakalova L, Debrand E, Mitchell JA et al. Replication and transcription: shaping the landscape of the genome. Nat Rev Genet 2005; 6(9):669–677.CrossRefPubMedGoogle Scholar
  32. 32.
    Yang Q, Riblet R, Schildkraut CL. Sites that direct nuclear compartmentalization are near the 5′ end of the mouse immunoglobulin heavy-chain locus. Mol Cell Biol 2005; 25(14):6021–6030.CrossRefPubMedGoogle Scholar
  33. 33.
    Kikuchi K, Lai AY, Hsu CL et al. IL-7 receptor signaling is necessary for stage transition in adult B-cell development through up-regulation of EBF. J Exp Med 2005; 201(8):1197–1203.CrossRefPubMedGoogle Scholar
  34. 34.
    Dias S, Silva H Jr, Cumano A et al. Interleukin-7 is necessary to maintain the B-cell potential in common lymphoid progenitors. J Exp Med 2005; 201(6):971–979.CrossRefPubMedGoogle Scholar
  35. 35.
    Busslinger M. Transcriptional control of early B-cell development. Annu Rev Immunol 2004; 22:55–79.CrossRefPubMedGoogle Scholar
  36. 36.
    Chevillard C, Ozaki J, Herring CD et al. A three-megabase yeast artificial chromosome contig spanning the C57BL mouse Igh locus. J Immunol 2002; 168(11):5659–5666.PubMedGoogle Scholar
  37. 37.
    Johnston CM, Wood AL, Bolland DJ et al. Complete sequence assembly and characterization of the C57BL/6 mouse Ig heavy chain V region. J Immunol 2006; 176(7):4221–4234.PubMedGoogle Scholar
  38. 38.
    Yancopoulos GD, Desiderio SV, Paskind M et al. Preferential utilization of the most JH-proximal VH gene segments in pre-B-cell lines. Nature 1984; 311(5988):727–733.CrossRefPubMedGoogle Scholar
  39. 39.
    Jeong HD, Teale JM. VH gene family repertoire of resting B-cells. Preferential use of D-proximal families early in development may be due to distinct B-cell subsets. J Immunol 1989; 143(8):2752–2760.PubMedGoogle Scholar
  40. 40.
    Malynn BA, Yancopoulos GD, Barth JE et al. Biased expression of JH-proximal VH genes occurs in the newly generated repertoire of neonatal and adult mice. J Exp Med 1990; 171(3):843–859.CrossRefPubMedGoogle Scholar
  41. 41.
    Ten Boekel E, Melchers F, Rolink AG. Changes in the V(H) gene repertoire of developing precursor B-lymphocytes in mouse bone marrow mediated by the pre-B-cell receptor. Immunity 1997; 7(3):357–368.CrossRefPubMedGoogle Scholar
  42. 42.
    Corcoran AE, Riddell A, Krooshoop D et al. Impaired immunoglobulin gene rearrangement in mice lacking the IL-7 receptor. Nature 1998; 391(6670):904–907.CrossRefPubMedGoogle Scholar
  43. 43.
    Bertolino E, Reddy K, Medina KL et al. Regulation of interleukin 7-dependent immunoglobulin heavy-chain variable gene rearrangements by transcription factor STAT5. Nat Immunol 2005; 6(8):836–843.CrossRefPubMedGoogle Scholar
  44. 44.
    Johnson K, Angelin-Duclos C, Park S et al. Changes in histone acetylation are associated with differences in accessibility of V(H) gene segments to V-DJ recombination during B-cell ontogeny and development. Mol Cell Biol 2003; 23(7):2438–2450.CrossRefPubMedGoogle Scholar
  45. 45.
    Nutt SL, Heavey B, Rolink AG et al. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 1999; 401(6753):556–562.CrossRefPubMedGoogle Scholar
  46. 46.
    Hesslein DG, Pflugh DL, Chowdhury D et al. Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments. Genes Dev 2003; 17(1):37–42.CrossRefPubMedGoogle Scholar
  47. 47.
    Johnson K, Pflugh DL, Yu D et al. B-cell-specific loss of histone 3 lysine 9 methylation in the V(H) locus depends on Pax5. Nat Immunol 2004; 5(8):853–861.CrossRefPubMedGoogle Scholar
  48. 48.
    Hsu LY, Liang HE, Johnson K et al. Pax5 activates immunoglobulin heavy chain V to DJ rearrangement in transgenic thymocytes. J Exp Med 2004; 199(6):825–830.CrossRefPubMedGoogle Scholar
  49. 49.
    Liu H, Schmidt-Supprian M, Shi Y et al. Yin Yang 1 is a critical regulator of B-cell development. Genes Dev 2007; 21(10):1179–1189.CrossRefPubMedGoogle Scholar
  50. 50.
    Curry JD, Geier JK, Schlissel MS. Single-strand recombination signal sequence nicks in vivo: evidence for a capture model of synapsis. Nat Immunol 2005; 6(12):1272–1279.CrossRefPubMedGoogle Scholar
  51. 51.
    Su IH, Basavaraj A, Krutchinsky AN et al. Ezh2 controls B-cell development through histone H3 methylation and Igh rearrangement. Nat Immunol 2003; 4(2):124–131.CrossRefPubMedGoogle Scholar
  52. 52.
    Osipovich O, Milley R, Meade A et al. Targeted inhibition of V(D)J recombination by a histone methyltransferase. Nat Immunol 2004; 5(3):309–316.CrossRefPubMedGoogle Scholar
  53. 53.
    Bolland DJ, Wood AL, Johnston CM et al. Antisense intergenic transcription in V(D)J recombination. Nat Immunol 2004; 5(6):630–637.CrossRefPubMedGoogle Scholar
  54. 54.
    Jhunjhunwala S, van Zelm MC, Peak MM et al. The 3D structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions. Cell 2008; 133(2):265–279.CrossRefPubMedGoogle Scholar
  55. 55.
    Rolink AG, Winkler T, Melchers F et al. Precursor B-cell receptor-dependent B-cell proliferation and differentiation does not require the bone marrow or fetal liver environment. J Exp Med 2000; 191(1):23–32.CrossRefPubMedGoogle Scholar
  56. 56.
    Tokoyoda K, Egawa T, Sugiyama T et al. Cellular niches controlling B-lymphocyte behavior within bone marrow during development. Immunity 2004; 20(6):707–718.CrossRefPubMedGoogle Scholar
  57. 57.
    McGuire KL, Vitetta ES. kappa/lambda Shifts do not occur during maturation of murine B-cells. J Immunol 1981; 127(4):1670–1673.PubMedGoogle Scholar
  58. 58.
    Johnson K, Hashimshony T, Sawai CM et al. Regulation of Immunoglobulin Light-Chain Recombination by the Transcription Factor IRF-4 and the Attenuation of Interleukin-7 Signaling. Immunity 2008; 28(3):335–345.CrossRefPubMedGoogle Scholar
  59. 59.
    Lazorchak AS, Schlissel MS, Zhuang Y. E2A and IRF-4/Pip promote chromatin modification and transcription of the immunoglobulin kappa locus in pre-B-cells. Mol Cell Biol 2006; 26(3):810–821.CrossRefPubMedGoogle Scholar
  60. 60.
    Lu R, Medina KL, Lancki DW et al. IRF-4,8 orchestrate the pre-B-to-B transition in lymphocyte development. Genes Dev 2003; 17(14):1703–1708.CrossRefPubMedGoogle Scholar
  61. 61.
    Sato H, Saito-Ohara F, Inazawa J et al. Pax-5 is essential for kappa sterile transcription during Ig kappa chain gene rearrangement. J Immunol 2004; 172(8):4858–4865.PubMedGoogle Scholar
  62. 62.
    Shaffer AL, Peng A, Schlissel MS. In vivo occupancy of the kappa light chain enhancers in primary pro-and pre-B-cells: a model for kappa locus activation. Immunity 1997; 6(2):131–143.CrossRefPubMedGoogle Scholar
  63. 63.
    Muljo SA, Schlissel MS. A small molecule Abl kinase inhibitor induces differentiation of Abelson virus-transformed pre-B-cell lines. Nat Immunol 2003; 4(1):31–37.CrossRefPubMedGoogle Scholar
  64. 64.
    Thompson EC, Cobb BS, Sabbattini P et al. Ikaros DNA-binding proteins as integral components of B-cell developmental-stage-specific regulatory circuits. Immunity 2007; 26(3):335–344.CrossRefPubMedGoogle Scholar
  65. 65.
    Spanopoulou E, Roman CA, Corcoran LM et al. Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice. Genes Dev 1994; 8(9):1030–1042.CrossRefPubMedGoogle Scholar
  66. 66.
    Young F, Ardman B, Shinkai Y et al. Influence of immunoglobulin heavy-and light-chain expression on B-cell differentiation. Genes Dev 1994; 8(9):1043–1057.CrossRefPubMedGoogle Scholar
  67. 67.
    Stanhope-Baker P, Hudson KM, Shaffer AL et al. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell 1996; 85(6):887–897.CrossRefPubMedGoogle Scholar
  68. 68.
    Shaw AC, Swat W, Davidson L et al. Induction of Ig light chain gene rearrangement in heavy chaindeficient B-cells by activated Ras. Proc Natl Acad Sci USA 1999; 96(5):2239–2243.CrossRefPubMedGoogle Scholar
  69. 69.
    Flemming A, Brummer T, Reth M et al. The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B-cell expansion. Nat Immunol 2003; 4(1):38–43.CrossRefPubMedGoogle Scholar
  70. 70.
    Xu S, Lee KG, Huo J et al. Combined deficiencies in Bruton tyrosine kinase and phospholipase Cgamma2 arrest B-cell development at a pre-BCR + stage. Blood 2007; 109(8):3377–3384.CrossRefPubMedGoogle Scholar
  71. 71.
    Ma S, Turetsky A, Trinh L et al. IFN regulatory factor 4 and 8 promote Ig light chain kappa locus activation in pre-B-cell development. J Immunol 2006; 177(11):7898–7904.PubMedGoogle Scholar
  72. 72.
    Grawunder U, Haasner D, Melchers F et al. Rearrangement and expression of kappa light chain genes can occur without mu heavy chain expression during differentiation of pre-B-cells. Int Immunol 1993; 5(12):1609–1618.CrossRefPubMedGoogle Scholar
  73. 73.
    Milne CD, Fleming HE, Paige CJ. IL-7 does not prevent pro-B/pre-B-cell maturation to the immature/sIgM(+) stage. Eur J Immunol 2004; 34(10):2647–2655.CrossRefPubMedGoogle Scholar
  74. 74.
    Coleclough C, Perry RP, Karjalainen K et al. Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expression. Nature 1981; 290(5805):372–378.CrossRefPubMedGoogle Scholar
  75. 75.
    Schlissel MS. Regulation of activation and recombination of the murine Igkappa locus. Immunol Rev 2004; 200:215–223.CrossRefPubMedGoogle Scholar
  76. 76.
    Liang HE, Hsu LY, Cado D et al. Variegated transcriptional activation of the immunoglobulin kappa locus in pre-B-cells contributes to the allelic exclusion of light-chain expression. Cell 2004; 118(1):19–29.CrossRefPubMedGoogle Scholar
  77. 77.
    Mostoslavsky R, Singh N, Tenzen T et al. Asynchronous replication and allelic exclusion in the immune system. Nature 2001; 414(6860):221–225.CrossRefPubMedGoogle Scholar
  78. 78.
    Mostoslavsky R, Kirillov A, Ji YH et al. Demethylation and the establishment of kappa allelic exclusion. Cold Spring Harb Symp Quant Biol 1999; 64:197–206.CrossRefPubMedGoogle Scholar
  79. 79.
    Goldmit M, Schlissel M, Cedar H et al. Differential accessibility at the kappa chain locus plays a role in allelic exclusion. EMBO J 2002; 21(19):5255–5261.CrossRefPubMedGoogle Scholar
  80. 80.
    Goldmit M, Ji Y, Skok J et al. Epigenetic ontogeny of the Igk locus during B-cell development. Nat Immunol 2005; 6(2):198–203.CrossRefPubMedGoogle Scholar
  81. 81.
    Liu Z, Widlak P, Zou Y et al. A recombination silencer that specifies heterochromatin positioning and ikaros association in the immunoglobulin kappa locus. Immunity 2006; 24(4):405–415.CrossRefPubMedGoogle Scholar
  82. 82.
    Chowdhury D, Sen R. Transient IL-7/IL-7R signaling provides a mechanism for feedback inhibition of immunoglobulin heavy chain gene rearrangements. Immunity 2003; 18(2):229–241.CrossRefPubMedGoogle Scholar
  83. 83.
    Roldan E, Fuxa M, Chong W et al. Locus ‘deconstraction’ and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat Immunol 2005; 6(1):31–41.CrossRefPubMedGoogle Scholar
  84. 84.
    Hewitt SL, Farmer D, Marszalek K et al. Association between the Igk and Igh immunoglobulin loci mediated by the 3′ Igk enhancer induces ‘decontraction’ of the Igh locus in pre-B-cells. Nat Immunol 2008; 9(4):396–404.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Kristen Johnson
    • 1
  • Karen L. Reddy
    • 1
  • Harinder Singh
    • 1
  1. 1.Department of Molecular Genetics and Cell Biology Howard Hughes Medical InstituteThe University of ChicagoChicagoUSA

Personalised recommendations