Skip to main content

The Functional Significance of Jaw-Muscle Fiber Architecture in Tree-Gouging Marmosets

  • Chapter
  • First Online:

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR))

Abstract

Marmoset species are specialized gummivorous callitrichids that gouge holes in trees to stimulate the flow of exudate. Recent experimental studies suggest that when common marmosets (Callithrix jacchus) gouge trees in the wild, they do so with jaw gapes approaching their maximum structural capacity for jaw opening. Common marmosets also have relatively elongated mandibular condyles (extending the radius of curvature) and glenoid articular surfaces, and low mandibular condyles relative to the height of the tooth row, features that are advantageous in improving the capacity to generate wide jaw gapes.

To determine if tree-gouging marmosets have jaw muscles that are architecturally suited to improving muscle stretch, and hence wide jaw gapes, we evaluated fiber architecture of the masseter and temporalis muscles in two tree-gouging marmosets (Callithrix jacchus and Cebuella pygmaea) and one nongouging tamarin (Saguinus oedipus). Common and pygmy marmosets have relatively longer masseter and temporalis fibers. As fiber length is proportional to muscle excursion, these findings indicate that tree-gouging marmosets have jaw-closing muscles that are well suited to facilitating muscle stretch, and thus large jaw gapes. Marmosets also have a lower tendon to muscle fiber ratio, which may facilitate greater neural control over this specialized feeding behavior. The masseter and temporalis physiological cross-sectional areas (PCSAs) are relatively smaller in tree-gouging marmosets compared to the tamarin. PCSA is directly proportional to the maximum tetanic tension that a muscle can generate. Therefore, tree-gouging marmosets have relatively lower force generating abilities compared to S. oedipus. The relatively smaller PCSAs support previous evaluation of the bony masticatory apparatus, which found no morphological evidence to suggest that marmosets have increased force generation or load resistance abilities compared to tamarins. Relatively longer fibers, and their capacity to enhance muscle stretch, suggest that masseter and temporalis fiber architecture function to facilitate the production of wide jaw gapes during tree gouging in the animal’s natural environment.

Resumen

Las especies marmosets son gumnívoros calitricidos especializados que cavan oquedades en los árboles estimulados por corrientes exudadas. Estudios experimentales recientes sugieren que cuando los Callithris jacchus excavan árboles en la naturaleza, realizan ellos con las mandíbulas abiertas acercándose a su máxima capacidad estructural para la apertura de la mandíbula. Los Callithrix jacchus tienen también cóndilos mandibulares y superficies glenoides articulares relativamente alargadas, y cóndilos mandibulares inferiores relativamente altos en relación a la hilera de dientes, rasgos que generan ventajas al incrementar la capacidad de generar aperturas de mandíbula amplias.

Para determinar si los marmosets excavadores de árboles tienen músculos mandibulares que están arquitectónicamente colocados para incrementar la elasticidad muscular, y asociados a las aperturas amplias de mandíbula, evaluamos la arquitectura de fibra de los músculos masseter y temporales en dos marmosets (C. jacchus y Cebuella pygmea) y un tamarin no excavador (Saguinus oedipus). Los C. jacchus y C. pygmaea tienen fibras masseter y temporales relativamente más largos. Como el tamaño de la fibra es proporcional a la excursión muscular, los hallazgos indican que los marmosets excavadores de árboles tienen músculos para cerrar la mandíbula los cuales están bien situados para facilitar la elasticidad muscular, y por lo tanto aperturas de mandíbulas amplias. Asimismo, también muestran el tendón bajo para reforzar el radio de la fibra muscular, el cual puede facilitar un mayor control neutral sobre dicho comportamiento especializado de alimentación. Las áreas fisiológicas seccionales cruzadas PCSA de los masseter y los temporales son relativamente más pequeñas en los los C. jacchus y C. Cebuella comparados con el S. oedipus. El PCSA es directamente proporcional a la tensión máxima tetánica que un músculo puede generar. Por lo tanto, los C. jacchus y C. Cebuella muestran habilidades generadoras de fuerza relativamente baja comparadas con el S. oedipus. La PCSA relativamente más pequeña apoya evaluaciones previas relacionadas con el aparato de hueso masticatorio, el cual no encontró evidencia morfológica que sugiera que los marmosets han incrementado la generación de fuerza o habilidades de resistencia de carga comparada con los tamarins. Fibras relativamente más largas, y su capacidad para realzar la elasticidad muscular, sugiere que las fibras largas masseter y temporales funcionan para facilitar la producción de aperturas amplias de mandíbula durante la excavación de árboles en su ambiente natural.

Resumo

Micos são espécies de calitriquídeos especializadas em comer goma, raspando buracos nas árvores para estimular o fluxo de exsudados. Estudos experimentais recentes sugerem que quando os micos-estrelas (Callithrix jacchus) raspam as árvores no campo, eles fazem com aberturas da mandíbula aproximando o máximo da capacidade estrutural de abertura da mandíbula. Micos-estrela também têm côndilos mandibulares (extendendo o raio da curvatura) e superfícies articulares glenóides relativamente longos, e côndilos mandibulares baixos em relação à altura dos dentes, caracteristicas que são vantajosas em aumentar a capacidade de mordidas amplas da mandíbula.

Para determinar se os micos “goivadores” de árvores têm músculos mandibulares que são arquiteturalmente adaptados para melhorar o estiramento muscular, e portanto amplas aberturas mandibulares, nós avaliamos a arquitetura de fibras do masseter e do temporal em dois micos (Callithrix jacchus e Cebuella pygmaea) e um mico não-goivador (Saguinus oedipus). Micos-estrelas e sagüis-leãozinho têm fibras massetéricas e temporais relativamente longas. Como o comprimento da fibra é proporcional à excursão do músculo, estas descobertas indicam que os micos goivadores-de-árvores têm músculos adutores da mandíbula que são bem ajustados para facilitar a estiramento muscular, e assim grandes aberturas da boca. Os micos também têm uma baixa proporção de tendão para fibra muscular, o que facilita mais ainda o controle neural(neurológico) sobre este comportamento alimentar especializado. As áreas de seção-transversal fisiológica (PCSAs) do masseter e temporal são relativamente pequenas nos micos-goivadores quando comparadas aos sagüis. A PCSA é diretamente proporcional a tensão tetânica que um músculo pode gerar. Portanto, micos-goivadores têm relativamente menor capacidade de gerar forças quando comparados à S. oedipus. As PCSAs relativamente menores suportam as avaliações prévias do aparato masticatório ósseo, que não mostraram nenhuma evidência morfológica que indicasse que os micos têm uma geração de força maior ou resistência a cargas quando comparados aos sagüis (Saguinus). Fibras relativamente longas, e sua capacidade de potencializar a extensão múscular, sugerem que a arquitetura do masseter e do temporal funciona para facilitar a produção de grandes aberturas da boca durante a raspagem das árvores no ambiente natural.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Although Cebuella pygmaea does not fall along the trend for PCSA and fiber length as observed for Callithrix jacchus and Saguinus oedipus, C. pygamea has absolute fiber lengths that approach those of S. oedipus, at a quarter of their body mass.

References

  • Anapol F, Barry K (1996) Fiber architecture of the extensors of the hindlimb in semiterrestrial and arboreal guenons. Am J Phys Anthropol 99:429–47

    Article  CAS  PubMed  Google Scholar 

  • Anapol F, Jungers WL (1986) Architectural and histochemical diversity within the quadriceps femoris of the brown lemur (Lemur fulvus). Am J Phys Anthropol 69:355–375

    Article  CAS  PubMed  Google Scholar 

  • Biewener AA (1998) Muscle-tendon stresses and elastic energy storage during locomotion in the horse. Comp Biochem Physiol B Biochem Mol Biol 120:73–87

    Google Scholar 

  • Biewener AA, Roberts TJ (2000) Muscle and tendon contributions to force, work, and elastic energy savings: A comparative perspective. Exerc Sport Sci Rev 28:99–107

    CAS  PubMed  Google Scholar 

  • Bock WJ, von Wahlert G (1965) Adaptation and the form-function complex. Evolution 19:269–299.

    Article  Google Scholar 

  • Coimbra-Filho AF, Mittermeier RA (1977) Tree-gouging, exudate-eating and the “short-tusked” condition in Callithrix and Cebuella. In: Kleiman DG (ed) The biology and conservation of the Callitrichidae. Smithsonian Institution Press, Washington, DC, pp 105–115

    Google Scholar 

  • Daley MA, Biewener AA (2003) Muscle force-length dynamics during level versus incline locomotion: A comparison of in vivo performance of two guinea fowl ankle extensors. J Exp Biol 206:2941–2958

    Article  PubMed  Google Scholar 

  • Dechow PC, Carlson DS (1990) Occlusal force and craniofacial biomechanics during growth in rhesus monkeys. Am J Phys Anthropol 83:219–237

    Article  Google Scholar 

  • Dechow PC, Carlson DS (1982) Bite force and gape in rhesus macaques. Am J Phys Anthropol 57:179

    Google Scholar 

  • Dechow PC, Carlson DS (1986) Occlusal force after mandibular advancement in adult rhesus monkeys. J Oral Maxillofac Surg 44:887–893

    Article  CAS  PubMed  Google Scholar 

  • Dumont ER (1997) Cranial shape in fruit, nectar, and exudate feeders: Implications for interpreting the fossil record. Am J Phys Anthropol 102:187–202

    Article  CAS  PubMed  Google Scholar 

  • Ferrari SF, Martins ES (1992) Gummivory and gut morphology in two sympatric callitrichids (Callithrix emiliae and Saguinus fuscicollis weddelli) from western Brazilian Amazonia. Am J Phys Anthropol 88:97–103

    Article  CAS  PubMed  Google Scholar 

  • Gans C, Bock WJ (1965) The functional significance of muscle architecture: A theoretical analysis. Ergeb Anat Entwicklungsgesch 38:115–142

    CAS  PubMed  Google Scholar 

  • Gans C (1982) Fiber architecture and muscle function. Exer Sport Sci Rev 10:160–207

    Article  CAS  Google Scholar 

  • Gans C, de Vree F (1987) Functional bases of fiber length and angulation in muscle. J Morphol 192:63–85

    Article  CAS  PubMed  Google Scholar 

  • Garber PA (1992) Vertical clinging, small body size, and the evolution of feeding adaptations in the Callitrichinae. Am J Phys Anthropol 88:469–482

    Article  CAS  PubMed  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966a) Tension development in highly stretched vertebrate muscle fibres. J Physiol (Lond) 184:143–169

    CAS  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966b) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol (Lond) 184:170–192

    CAS  Google Scholar 

  • Herring SW, Herring SE (1974) The superficial masseter and gape in mammals. Am Nat 108:561–576

    Article  Google Scholar 

  • Herring S, Grimm AF, Grimm BR (1979) Functional heterogeneity in a multipinnate muscle. Am J Anat 154:563–576

    Article  CAS  PubMed  Google Scholar 

  • Herring SW (1992) Muscles of mastication: Architecture and functional organization. In Davidovitch Z (ed) The Biological Mechanisms of Tooth Movement and Craniofacial Adaptation. The Ohio State University College of Dentistry, Columbus, Ohio, pp. 541–548

    Google Scholar 

  • Hershkovitz P (1977) Living New World primates (Platyrrhini), with an introduction to primates, vol 1. University Chicago Press, Chicago

    Google Scholar 

  • Hill WCO (1957) Primates, comparative anatomy and taxonomy, vol. 3: Pithecoidea: Platyrrhini. Edinburgh University Press, Edinburgh

    Google Scholar 

  • Lieber RL (2002) Skeletal Muscle Structure, Function, and Plasticity. Baltimore: Lippincott Williams and Wilkins.

    Google Scholar 

  • Napier JR, Napier PH (1967) A Handbook of Living Primates. Academic Press, London

    Google Scholar 

  • Nash LT (1986) Dietary, behavioral, and morphological aspects of gumnivory in primates. Yrbk Phys Anthropol 29:113–137

    Article  Google Scholar 

  • Rosenberger AL (1978) Loss of incisor enamel in marmosets. J Mamm 59:207–208

    Article  Google Scholar 

  • Rosenberger AL (1992) Evolution of feeding niches in New World monkeys. Am J Phys Anthropol 88:525–562

    Article  CAS  PubMed  Google Scholar 

  • Salmons S, Vrbova G (1969) The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol (Lond) 201:535–549

    CAS  Google Scholar 

  • Spencer MA (1999) Constraints on masticatory system evolution in anthropoid primates. Am J Phys Anthropol 108:483–506

    Article  CAS  PubMed  Google Scholar 

  • Szalay FS, Seligsohn D (1977) Why did the strepsirhine tooth comb evolve? Folia Primatol 27:75–82

    Article  CAS  PubMed  Google Scholar 

  • Taylor AB, Vinyard CJ (2004) Comparative analysis of masseter fiber architecture in tree-gouging (Callithrix jacchus) and nongouging (Saguinus oedipus) callitrichids. J Morphol 261:276–285

    Article  PubMed  Google Scholar 

  • Taylor AB, Vinyard CJ (2008) The relationship between jaw-muscle fiber architecture and feeding behavior in primates: Tree-gouging and nongouging gummivorous callitrichids as a natural experiment. In: Vinyard CJ, Ravosa MJ, Wall CE (eds). Primate Craniofacial Function and Biology, p. 241–264. New York: Springer

    Chapter  Google Scholar 

  • Taylor AB, Eng CM, Anapol F, Vinyard CJ (2009) The functional correlates of jaw-muscle fiber architecture in tree-gouging and nongouging callitrichid monkeys. Am J Phys Anthropol.

    Google Scholar 

  • Van Eijden TM, Blanksma NG, Brugman P (1993) Amplitude and timing of EMG activity in the human masseter muscle during selected motor tasks. J Dent Res 72:599–606

    Article  PubMed  Google Scholar 

  • Van Eijden TM, Turkawski SJ (2001) Morphology and physiology of masticatory muscle motor units. Crit Rev Oral Biol Med 12:76–91

    Article  PubMed  Google Scholar 

  • Vinyard CJ, Wall CE, Williams SH, Schmitt D, Hylander WL (2001) A preliminary report on the jaw mechanics during tree gouging in common marmosets (Callithrix jacchus). In: Brooks A (ed) Dental morphology 2001: Proceedings of the 12th international symposium on dental morphology. Sheffield Academic Press, Ltd, Sheffield, UK, pp 283–297

    Google Scholar 

  • Vinyard CJ, Wall CE, Williams SH, Hylander WL (2003) A comparative functional analysis of the skull morphology of tree gouging primates. Am J Phys Anthropol 120:153–170

    Article  PubMed  Google Scholar 

  • Weijs WA, Dantuma R (1981) Functional anatomy of the masticatory apparatus in the rabbit (Oryctolagus cuniculus L.). Neth J Zool 31:99–147

    Article  Google Scholar 

  • White LE, Jones KE, Vinyard CJ, Taylor AB (2006) Functional architecture of the brainstem trigeminal complex in two callitrichid species with divergent feeding behaviors (Callithrix jacchus and Saguinus oedipus). Am J Phys Anthropol Suppl 42:187

    Google Scholar 

  • Williams PE, Goldspink G (1971) Longitudinal growth of striated muscle fibres. J Cell Sci 9:751–767

    CAS  PubMed  Google Scholar 

  • Williams PE, Goldspink G (1973) The effect of immobilization on the longitudinal growth of striated muscle fibers. J Anat 116:45–55

    CAS  PubMed  Google Scholar 

  • Williams P, Watt P, Bicik V, Goldspink G (1986) Effect of stretch combined with electrical stimulation on the type of sarcomeres produced at the ends of muscle fibers. Exp Neurol 93:500–509

    Article  CAS  PubMed  Google Scholar 

  • Vinyard CJ, Wall CE, Williams SH, Mork AL, Garner BA, de Oliveiro Melo LC, Valença-Montenegro, MM, Valle YBM, Monteiro da Cruz MAO, Lucas PW, Schmitt D, Taylor AB, Hylander WL (this volume) The evolutionary morphology of tree gouging in marmosets. In: Ford SM, Porter LM, Davis LC (eds) The smallest anthropoids: The marmoset/callimico radiation. Springer Press, New York, (this volume)

    Google Scholar 

Download references

Acknowledgments

We thank Lesa Davis, Susan Ford, and Leila Porter for inviting us to contribute to this volume, and to participate in the symposium “Advances in Marmoset and Goeldi’s Monkey (Callimico) Research: Anatomy, Behavioral Ecology, Phylogeny, and Conservation” held at the American Association of Physical Anthropologists Meetings on April 8, 2005. We are grateful to Elizabeth Curran (NEPRC), Amanda Trainor (WPRC), Suzette Tardiff (SFBR), and Donna Layne (SFBR) for their help in providing the muscle tissue. This research was supported by NSF (BCS-0412153), (BCS-0094666), and (BCS-0412153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea B. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Taylor, A.B., Eng, C.M., Anapol, F.C., Vinyard, C.J. (2009). The Functional Significance of Jaw-Muscle Fiber Architecture in Tree-Gouging Marmosets. In: Ford, S., Porter, L., Davis, L. (eds) The Smallest Anthropoids. Developments in Primatology: Progress and Prospects. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0293-1_19

Download citation

Publish with us

Policies and ethics