Is There a Role for Immunotherapy in Osteosarcoma?

Chapter
Part of the Cancer Treatment and Research book series (CTAR, volume 152)

Abstract

With the introduction of effective systemic chemotherapy, the prognosis for patients with osteosarcoma has improved dramatically. Estimates of overall survival for osteosarcoma patients prior to 1975 ranged from 5 to 20%, even for patients with localized disease of the extremity treated with amputation. The majority of these patients eventually developed pulmonary metastases and succumbed to their disease. The introduction of effective chemotherapy has dramatically improved the outcome of patients with localized disease, but has not altered the survival of patients with metastatic disease. Moreover, there has been little, if any, improvement in the outcomes of patients with localized disease since the mid-1980s. This has led to the investigation of other treatment approaches, including immunotherapy. Coincident with the initial development of chemotherapy, there were early attempts at immunotherapy. These met with little success. Subsequent approaches to harnessing the immune system have yielded more encouraging results. This chapter will review these various approaches, highlighting the role that immunotherapy might play in the multi-modality treatment of localized and metastatic osteosarcoma.

Keywords

Toxicity Bacillus Methotrexate Malaria Cyclophosphamide 

References

  1. 1.
    Eilber FR, Morton DL. Demonstration in sarcoma patients of anti-tumor antibodies which fix only human complement. Nature. 1970;225(5238):1137-1138.CrossRefPubMedGoogle Scholar
  2. 2.
    Eilber FR, Morton DL. Sarcoma-specific antigens: detection by complement fixation with serum from sarcoma patients. J Natl Cancer Inst. 1970;44(3):651-656.PubMedGoogle Scholar
  3. 3.
    Wood WC, Morton DL. Microcytotoxicity test: detection in sarcoma patients of antibody cytotoxic to human sarcoma cells. Science. 1970;170(964):1318-1320.CrossRefPubMedGoogle Scholar
  4. 4.
    Theoleyre S, Mori K, Cherrier B, et al. Phenotypic and functional analysis of lymphocytes infiltrating osteolytic tumors: use as a possible therapeutic approach of osteosarcoma. BMC Cancer. 2005;5:123.CrossRefPubMedGoogle Scholar
  5. 5.
    Merchant MS, Melchionda F, Sinha M, Khanna C, Helman L, Mackall CL. Immune reconstitution prevents metastatic recurrence of murine osteosarcoma. Cancer Immunol Immunother. 2007;56(7):1037-1046.CrossRefPubMedGoogle Scholar
  6. 6.
    Wiemann B, Starnes CO. Coley’s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol Ther. 1994;64(3):529-564.CrossRefPubMedGoogle Scholar
  7. 7.
    Marsh B, Flynn L, Enneking W. Immunologic aspects of osteosarcoma and their application to therapy. A preliminary report. J Bone Joint Surg Am. 1972;54(7):1367-1397.PubMedGoogle Scholar
  8. 8.
    Eilber FR, Grant T, Morton DL. Adjuvant therapy for osteosarcoma: preoperative and postoperative treatment. Cancer Treat Rep. 1978;62(2):213-216.PubMedGoogle Scholar
  9. 9.
    Friedl P, Storim J. Diversity in immune-cell interactions: states and functions of the immunological synapse. Trends Cell Biol. 2004;14(10):557-567.CrossRefPubMedGoogle Scholar
  10. 10.
    Tsukahara T, Kawaguchi S, Torigoe T, et al. Prognostic significance of HLA class I expression in osteosarcoma defined by anti-pan HLA class I monoclonal antibody, EMR8–5. Cancer Sci. 2006;97(12):1374-1380.CrossRefPubMedGoogle Scholar
  11. 11.
    Yu Z, Ma B, Zhou Y, Zhang M, Qiu X, Fan Q. Activation of antitumor cytotoxic T lymphocytes by fusion of patient-derived dendritic cells with autologous osteosarcoma. Exp Oncol. 2005;27(4):273-278.PubMedGoogle Scholar
  12. 12.
    Gilchrist GS, Ivins JC, Ritts RE Jr, Pritchard DJ, Taylor WF, Edmonson JM. Adjuvant therapy for nonmetastatic osteogenic sarcoma: an evaluation of transfer factor versus combination chemotherapy. Cancer Treat Rep. 1978;62(2):289-294.PubMedGoogle Scholar
  13. 13.
    Spitler LE, Miller L. Clinical trials of transfer factor in malignancy. J Exp Pathol. 1987;3(4):549-564.PubMedGoogle Scholar
  14. 14.
    Jaffe N, Frei E 3rd, Traggis D, Bishop Y. Adjuvant methotrexate and citrovorum-factor treatment of osteogenic sarcoma. N Engl J Med. 1974;291(19):994-997.CrossRefPubMedGoogle Scholar
  15. 15.
    Strander H, Bauer HC, Brosjo O, et al. Long-term adjuvant interferon treatment of human osteosarcoma. A pilot study. Acta Oncol. 1995;34(6):877-880.CrossRefPubMedGoogle Scholar
  16. 16.
    Muller CR, Smeland S, Bauer HC, Saeter G, Strander H. Interferon-alpha as the only adjuvant treatment in high-grade osteosarcoma: long term results of the Karolinska Hospital series. Acta Oncol. 2005;44(5):475-480.CrossRefPubMedGoogle Scholar
  17. 17.
    Lindner DJ. Interferons as antiangiogenic agents. Curr Oncol Rep. 2002;4(6):510-514.CrossRefPubMedGoogle Scholar
  18. 18.
    Kleinerman ES, Jia SF, Griffin J, Seibel NL, Benjamin RS, Jaffe N. Phase II study of liposomal muramyl tripeptide in osteosarcoma: the cytokine cascade and monocyte activation following administration. J Clin Oncol. 1992;10(8):1310-1316.PubMedGoogle Scholar
  19. 19.
    MacEwen EG, Kurzman ID, Rosenthal RC, et al. Therapy for osteosarcoma in dogs with intravenous injection of liposome-encapsulated muramyl tripeptide. J Natl Cancer Inst. 1989;81(12):935-938.CrossRefPubMedGoogle Scholar
  20. 20.
    Kleinerman ES, Gano JB, Johnston DA, Benjamin RS, Jaffe N. Efficacy of liposomal muramyl tripeptide (CGP 19835A) in the treatment of relapsed osteosarcoma. Am J Clin Oncol. 1995;18(2):93-99.CrossRefPubMedGoogle Scholar
  21. 21.
    Meyers PA, Schwartz CL, Krailo M, et al. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol. 2005;23(9):2004-2011.CrossRefPubMedGoogle Scholar
  22. 22.
    Meyers PA, Schwartz CL, Krailo MD, et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival – a report from the Children’s Oncology Group. J Clin Oncol. 2008;26(4):633-638.CrossRefPubMedGoogle Scholar
  23. 23.
    Rao RD, Anderson PM, Arndt CA, Wettstein PJ, Markovic SN. Aerosolized granulocyte macrophage colony-stimulating factor (GM-CSF) therapy in metastatic cancer. Am J Clin Oncol. 2003;26(5):493-498.CrossRefPubMedGoogle Scholar
  24. 24.
    Duan X, Zhou Z, Jia SF, Colvin M, Lafleur EA, Kleinerman ES. Interleukin-12 enhances the sensitivity of human osteosarcoma cells to 4-hydroperoxycyclophosphamide by a mechanism involving the Fas/Fas-ligand pathway. Clin Cancer Res. 2004;10(2):777-783.CrossRefPubMedGoogle Scholar
  25. 25.
    Jia SF, Worth LL, Densmore CL, Xu B, Duan X, Kleinerman ES. Aerosol gene therapy with PEI: IL-12 eradicates osteosarcoma lung metastases. Clin Cancer Res. 2003;9(9):3462-3468.PubMedGoogle Scholar
  26. 26.
    Jia SF, Worth LL, Densmore CL, Xu B, Zhou Z, Kleinerman ES. Eradication of osteosarcoma lung metastases following intranasal interleukin-12 gene therapy using a nonviral polyethylenimine vector. Cancer Gene Ther. 2002;9(3):260-266.CrossRefPubMedGoogle Scholar
  27. 27.
    Duan X, Jia SF, Koshkina N, Kleinerman ES. Intranasal interleukin-12 gene therapy enhanced the activity of ifosfamide against osteosarcoma lung metastases. Cancer. 2006;106(6):1382-1388.CrossRefPubMedGoogle Scholar
  28. 28.
    Liebau C, Merk H, Schmidt S, et al. Interleukin-12 and interleukin-18 change ICAM-I expression, and enhance natural killer cell mediated cytolysis of human osteosarcoma cells. Cytokines Cell Mol Ther. 2002;7(4):135-142.CrossRefPubMedGoogle Scholar
  29. 29.
    Sutherland CM, Krementz ET, Hornung MO, Carter RD, Holmes J. Transfer of in vitro cytotoxicity against osteogenic sarcoma cells. Surgery. 1976;79(6):682-685.PubMedGoogle Scholar
  30. 30.
    Gorlick R, Huvos AG, Heller G, et al. Expression of HER2/erbB-2 correlates with survival in osteosarcoma. J Clin Oncol. 1999;17(9):2781-2788.PubMedGoogle Scholar
  31. 31.
    Morris CD, Gorlick R, Huvos G, Heller G, Meyers PA, Healey JH. Human epidermal growth factor receptor 2 as a prognostic indicator in osteogenic sarcoma. Clin Orthop Relat Res. 2001;382:59-65.CrossRefPubMedGoogle Scholar
  32. 32.
    Thomas DG, Giordano TJ, Sanders D, Biermann JS, Baker L. Absence of HER2/neu gene expression in osteosarcoma and skeletal Ewing’s sarcoma. Clin Cancer Res. 2002;8(3):788-793.PubMedGoogle Scholar
  33. 33.
    Scotlandi K, Manara MC, Hattinger CM, et al. Prognostic and therapeutic relevance of HER2 expression in osteosarcoma and Ewing’s sarcoma. Eur J Cancer. 2005;41(9):1349-1361.CrossRefPubMedGoogle Scholar
  34. 34.
    Somers GR, Ho M, Zielenska M, Squire JA, Thorner PS. HER2 amplification and overexpression is not present in pediatric osteosarcoma: a tissue microarray study. Pediatr Dev Pathol. 2005;8(5):525-532.CrossRefPubMedGoogle Scholar
  35. 35.
    Torrisi R, Rotmensz N, Bagnardi V, et al. HER2 status in early breast cancer: relevance of cell staining patterns, gene amplification and polysomy 17. Eur J Cancer. 2007;43(16):2339-2344.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Oncology and Pediatrics, Musculoskeletal Tumor ProgramJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations