Clocking and Variation

  • James Tschanz
Chapter
Part of the Integrated Circuits and Systems book series (ICIR)

Abstract

As process technology continues to scale, increasing numbers of transistors are integrated onto a single processor die, providing higher levels of performance and additional features (Fig.1.1). However, the unwanted side-effect of this increased integration is the worsening of variations of all types: static process variations resulting from reduced device dimensions and dynamic voltage and temperature variations. At the same time, transistor degradation and early-life failure are always concerns, but becoming more critical as the number of devices increases.

The clock network on a microprocessor plays a special role in how the processor tolerates variations of all types. On one hand, the clock is very sensitive to variations, and any fluctuations in the clock due to variations can directly impact the frequency of the processor. Thus, it is absolutely critical to design the clock network in such a way that the impact of variations is reduced. On the other hand, variations also present an opportunity in clock network design. Because of the global nature of the clock, it can be used as a “knob” for tolerating variations or reducing their impacts. In this chapter, we will discuss both challenges and opportunities that variations present to clock network design.

Keywords

Expense Doyle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Oklobdzija (ed.), The Computer Engineering Handbook. CRC Press, Boca Raton, 2002.Google Scholar
  2. 2.
    H. Partovi, R. Burd, U. Salim, F. Weber, L. DiGregorio, and D. Draper, Flow-through latch and edge-triggered flip-flop hybrid elements. In: Digest of Technical Papers IEEE International Solid-State Circuits Conference (ISSCC 1996), 1996, pp. 138–139.Google Scholar
  3. 3.
    V. Oklobdzija, Clocking and clocked storage elements in a multi-gigahertz environment. IBM J. Res. Dev., 47(5/6), 567–583, 2003.CrossRefGoogle Scholar
  4. 4.
    D. Harris and M. Horowitz, Skew-tolerant domino circuits. IEEE J. Solid-State Circuits, 32(11), 1702–1711, 1997.CrossRefGoogle Scholar
  5. 5.
    K. Bowman, J. Tschanz, M. Khellah, M. Ghoneima, Y. Ismail, and V. De, Time-borrowing multi-cycle on-chip interconnects for delay variation tolerance. In: Proc. International Symposium on ISLPED’06 Low Power Electronics and Design, 4–6 October 2006, pp. 79–84.Google Scholar
  6. 6.
    P. Bai, C. Auth, S. Balakrishnan, M. Bost, R. Brain, V. Chikarmane, R. Heussner, M. Hussein, J. Hwang, D. Ingerly, R. James, J. Jeong, C. Kenyon, E. Lee, S.-H. Lee, N. Lindert, M. Liu, Z. Ma, T. Marieb, A. Murthy, R. Nagisetty, S. Natarajan, J. Neirynck, A. Ott, C. Parker, J. Sebastian, R. Shaheed, S. Sivakumar, J. Steigerwald, S. Tyagi, C. Weber, B. Woolery, A. Yeoh, K. Zhang, and M. Bohr, A 65nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57 μm 2 SRAM cell. In Proc. IEDM Technical Digest Electron Devices Meeting IEEE International, 13–15 December 2004, pp. 657–660.Google Scholar
  7. 7.
    A. Sarangi, G. F. Taylor, R. J. Parker, E. P. Osburn, and P. J. Ott, Power level management in an IA32 microprocessor. In: Proc. Electrical Performance of Electronic Packaging, 21–23 October 2002, pp. 235–238.Google Scholar
  8. 8.
    J. W. Tschanz, S. Narendra, R. Nair, and V. De, Effectiveness of adaptive supply voltage and body bias for reducing impact of parameter variations in low power and high performance microprocessors. IEEE J. Solid-State Circuits, 38(5), 826–829, 2003.CrossRefGoogle Scholar
  9. 9.
    T. Chen and S. Naffziger, Comparison of adaptive body bias (ABB) and adaptive supply voltage (ASV) for improving delay and leakage under the presence of process variation. IEEE Trans. VLSI Syst., 11(5), 888–899, 2003.CrossRefGoogle Scholar
  10. 10.
    S. Tam, S. Rusu, U. Nagarji Desai, R. Kim, J. Zhang, and I. Young, Clock generation and distribution for the first IA-64 microprocessor. IEEE J. Solid-State Circuits, 35(11), 1545–1552, 2000.CrossRefGoogle Scholar
  11. 11.
    G. Geannopoulos and X. Dai, An adaptive digital deskewing circuit for clock distribution networks. In: Digest of Technical Papers IEEE International Solid-State Circuits Conference (ISSCC 1998), 1998, pp. 400–401.Google Scholar
  12. 12.
    S. Naffziger, B. Stackhouse, and T. Grutkowski, The implementation of a 2-core multi-threaded Itanium®;-family processor. In: Digest of Technical Papers IEEE International Solid-State Circuits Conference (ISSCC 2005), 2005, pp. 182–183, 592.Google Scholar
  13. 13.
    T. Fischer, J. Desai, B. Doyle, S. Naffziger, and B. Patella, A 90-nm variable frequency clock system for a power-managed Itanium architecture processor. IEEE J. Solid-State Circuits, 41(1), 218–228, 2006.CrossRefGoogle Scholar
  14. 14.
    P. Mahoney, E. Fetzer, B. Doyle, and S. Naffziger, Clock distribution on a dual-core, multi-threaded Itanium®;-family processor. In: Digest of Technical Papers IEEE International Solid-State Circuits Conference (ISSCC 2005), February 2005, pp. 292–293, 599.Google Scholar
  15. 15.
    J. Tschanz, N. S. Kim, S. Dighe, J. Howard, G. Ruhl, S. Vanga, S. Narendra, Y. Hoskote, H. Wilson, C. Lam, M. Shuman, C. Tokunaga, D. Somasekhar, S. Tang, D. Finan, T. Karnik, N. Borkar, N. Kurd, and V. De, Adaptive frequency and biasing techniques for tolerance to dynamic temperature-voltage variations and aging. In: Digest of Technical Papers IEEE International Solid-State Circuits Conference (ISSCC 2007), 11–15 February 2007, pp. 292–293, 604.Google Scholar
  16. 16.
    D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge, Razor: a low-power pipeline based on circuit-level timing speculation. In: Proc. 36th Annual IEEE/ACM International Symposium on MICRO-36 Microarchitecture, 2003, pp. 7–18.Google Scholar
  17. 17.
    S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner, and T. Mudge, A self-tuning dvs processor using delay-error detection and correction. IEEE J. Solid-State Circuits, 41(4), 792–804, 2006.CrossRefGoogle Scholar
  18. 18.
    K. Bowman, J. Tschanz, N. S. Kim, J. Lee, C. Wilkerson, S.-L. Lu, T. Karnik, and V. De, Energy-efficient and metastability-immune timing-error detection and instruction-replay-based recovery circuits for dynamic-variation tolerance. In: Digest of Technical Papers IEEE International Solid-State Circuits Conference (ISSCC 2008), 3–7 February 2008, pp. 402–403, 623.Google Scholar
  19. 19.
    D. Blaauw, S. Kalaiselvan, K. Lai, W.-H. Ma, S. Pant, C. Tokunaga, S. Das, and D. Bull, Razor II: In situ error detection and correction for PVT and SER tolerance. In: Digest of Technical Papers IEEE International Solid-State Circuits Conference (ISSCC 2008), 2008, pp. 400–401, 622.Google Scholar
  20. 20.
    K. A. Bowman, J. W. Tschanz, N. S. Kim, J. C. Lee, C. B. Wilkerson, S.-L. L. Lu, T. Karnik, and V. K. De, Energy-efficient and metastability-immune resilient circuits for dynamic variation tolerance. IEEE J. Solid-State Circuits, 44(1), 49–63, 2009.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  • James Tschanz
    • 1
  1. 1.Intel CorporationSanta ClaraUSA

Personalised recommendations