Skip to main content

Phase Noise and Jitter

  • Chapter
  • First Online:
Clocking in Modern VLSI Systems

Part of the book series: Integrated Circuits and Systems ((ICIR))

  • 2744 Accesses

Abstract

In this chapter we examine variations that occur in the edge locations of the clock signal in a synchronous system. These edge variations are referred to in the time domain as jitter and in the frequency domain as phase noise. We also describe the various mechanisms that can cause these non-idealities and present techniques to analyze their individual contributions to total jitter. We begin by defining precisely what we mean by jitter and relate the various types of jitter to one another. Next, we explore the relationship between the time domain representation of timing error as jitter and the frequency domain representation of timing error as phase noise. The fundamental relationship between phase jitter (also denoted as absolute jitter) and phase noise will provide a useful basis for analysis of all types of jitter via simple frequency domain filter functions.

Building on this frequency domain foundation, we explore the jitter behavior of the phase locked loop (PLL) system that is most often used to generate on-chip clock signals. We utilize a control system block diagram model [1] that allows for simple analysis to determine how the PLL dynamics filter the noise sources internal to the PLL (intrinsic noise) as well as how the PLL reacts to noise sources externalto the PLL (extrinsic noise).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Perrott, M. Trott, and C. Sodini, A modeling approach for Σ − Δ fractional-N frequency synthesizers allowing straightforward noise analysis. IEEE J. Solid-State Circuits, 37(8), 1028–1038, 2002.

    Article  Google Scholar 

  2. JEDEC Standard JESD65B, 2003.

    Google Scholar 

  3. PCI Express Jitter Modeling, Revision 1.0RD, July 2004.

    Google Scholar 

  4. PCI Express Jitter and BER, Revision 1.0, February 2005.

    Google Scholar 

  5. B. Razavi, Design of Integrated Circuits for Optical Communications. McGraw-Hill, New York, 2002.

    Google Scholar 

  6. D. P. Bertsekas and J. N. Tsitsiklis, Introduction to Probability. Athena Scientific, Belmont, MA, 2002.

    Google Scholar 

  7. S. Meninger and M. Perrott, Bandwidth extension of low noise fractional-N synthesizers. In: Proc. Digest of Papers Radio Frequency integrated Circuits (RFIC) Symposium 2005 IEEE, 12–14 June 2005, pp. 211–214.

    Google Scholar 

  8. T. Weigandt, B. Kim, and P. Gray, Analysis of timing jitter in CMOS ring oscillators. In: Proc. IEEE International Symposium on Circuits and Systems ISCAS ’94, 4, 27–30, 1994.

    Google Scholar 

  9. J. McNeill, Jitter in ring oscillators. IEEE J. Solid-State Circuits, 32(6), 870–879, 1997.

    Article  Google Scholar 

  10. A. Hajimiri and T. Lee, A general theory of phase noise in electrical oscillators. IEEE J. Solid-State Circuits, 33(2), 179–194, 1998.

    Article  Google Scholar 

  11. B. Razavi, (ed.) Monolithic Phase-Locked Loops and Clock Recovery Circuits: Theory and Design. Wiley-IEEE Press, New York, 1996.

    Google Scholar 

  12. B. Razavi, (ed.) Phase-Locking in High-Performance Systems: From Devices to Architectures. Wiley-IEEE Press, New York, 2003.

    Google Scholar 

  13. H.-M. Chien, T.-H. Lin, B. Ibrahim, L. Zhang, M. Rofougaran, A. Rofougaran, and W. Kaiser, A 4 GHz fractional-N synthesizer for IEEE 802.11a. In: Proc. Digest of Technical Papers VLSI Circuits 2004 Symposium, 17–19 June 2004, 46–49.

    Google Scholar 

  14. S. Meninger, Low phase noise, high bandwidth frequency synthesis techniques. Ph.D. dissertation, Massachusetts Institute of Technology, 2005.

    Google Scholar 

  15. W. F. Egan, Frequency Synthesis by Phase Lock, 2nd edn. Wiley-Interscience, New York, 1999.

    Google Scholar 

  16. M. Perrott, CppSim behavioral simulation package. [Online]. Available: http://www.cppsim.com

  17. M. Cassia, P. Shah, and E. Bruun, Analytical model and behavioral simulation approach for a ΣΔ fractional-N synthesizer employing a sample-hold element. IEEE Trans. Circuits Syst. II, 50(11), 850–859, 2003.

    Article  Google Scholar 

  18. Integrated phase noise. Silicon Laboratories AN256, 2006.

    Google Scholar 

  19. Measuring Jitter in Digital Systems. Agilent Technologies Application Note 1448-1.

    Google Scholar 

  20. M. Li, J. Wilstrup, R. Jessen, and D. Petrich, New jitter decomposition method and its applications. Wavecrest Corporation, MN, 1999.

    Google Scholar 

  21. PCI Express Base Specification Revision 1.1, March 2005.

    Google Scholar 

  22. S. Sidiropoulos and M. Horowitz, A semidigital dual delay-locked loop. IEEE J. Solid-State Circuits, 32(11), 1683–1692, 1997.

    Article  Google Scholar 

  23. R. Farjad-Rad, W. Dally, H.-T. Ng, R. Senthinathan, M.-J. Lee, R. Rathi, and J. Poulton, A low-power multiplying DLL for low-jitter multigigahertz clock generation in highly integrated digital chips. IEEE J. Solid-State Circuits, 37(12), 1804–1812, 2002.

    Article  Google Scholar 

  24. S. Ye, L. Jansson, and I. Galton, A multiple-crystal interface PLL with VCO realignment to reduce phase noise. IEEE J. Solid-State Circuits, 37(12), 1795–1803, 2002.

    Article  Google Scholar 

  25. B. Helal, M. Straayer, G.-Y. Wei, and M. Perrott, A highly digital MDLL-based clock multiplier that leverages a self-scrambling time-to-digital converter to achieve subpicosecond jitter performance. IEEE J. Solid-State Circuits, 43(4), 855–863, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag US

About this chapter

Cite this chapter

Meninger, S. (2009). Phase Noise and Jitter. In: Xanthopoulos, T. (eds) Clocking in Modern VLSI Systems. Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0261-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0261-0_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0260-3

  • Online ISBN: 978-1-4419-0261-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics