The Solar Dynamo: The Role of Penetration, Rotation and Shear on Convective Dynamos

  • Steven M. Tobias
Part of the Space Sciences Series of ISSI book series (SSSI, volume 32)


In this paper I discuss the importance of turbulence, rotation, penetration and shear for solar dynamos (both local and global). An understanding of these processes is vital for progress towards a self-consistent theory for the generation of solar magnetic activity. I discuss the difficulties for large-scale field generation and suggest that large-scale solar magnetic activity may be driven by dynamos that arise owing to instabilities, with these dynamos modified by the presence of turbulence.


Solar dynamo Sun Magnetic fields Magnetic activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. S. Boldyrev, F. Cattaneo, Magnetic-field generation in Kolmogorov turbulence. Phys. Rev. Lett. 92, 144501 (2004) CrossRefADSGoogle Scholar
  2. A. Brandenburg, The case for a distributed solar dynamo shaped by near-surface shear. Astrophys. J. 625, 539–547 (2005) CrossRefADSGoogle Scholar
  3. A. Brandenburg, D. Schmitt, Simulations of an alpha-effect due to magnetic buoyancy. Astron. Astrophys. 338, L55–L58 (1998) ADSGoogle Scholar
  4. A. Brandenburg, K. Subramanian, Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1–209 (2005) CrossRefADSMathSciNetGoogle Scholar
  5. M.K. Browning, M.S. Miesch, A.S. Brun, J. Toomre, Dynamo action in the solar convection zone and tachocline: pumping and organization of toroidal fields. Astrophys. J. 648(2), L157–L160 (2006) CrossRefADSGoogle Scholar
  6. N.H. Brummell, F. Cattaneo, S.M. Tobias, The role of penetration in compressible dynamos (2008, in preparation) Google Scholar
  7. F. Cattaneo, D.W. Hughes, Dynamo action in a rotating convective layer. J. Fluid Mech. 553, 401–418 (2006) MATHCrossRefADSMathSciNetGoogle Scholar
  8. P. Charbonneau, K.B. MacGregor, Solar interface dynamos II. Linear kinematic models in spherical geometry. Astrophys. J. 486, 502 (1997) CrossRefADSGoogle Scholar
  9. K.S. Cline, N.H. Brummell, F. Cattaneo, Dynamo action driven by shear and magnetic buoyancy. Astrophys. J. 599, 1449–1468 (2003) CrossRefADSGoogle Scholar
  10. A.B. Iskakov, A.A. Schekochihin, S.C. Cowley, J.C. McWilliams, M.R.E. Proctor, Numerical demonstration of fluctuation dynamo at low magnetic Prandtl numbers. Phys. Rev. Lett. 98, 208501 (2007) CrossRefADSGoogle Scholar
  11. M. Ossendrijver, The solar dynamo. Astron. Astrophys. Rev. 11, 287 (2003) CrossRefADSGoogle Scholar
  12. E.N. Parker, Hydromagnetic dynamo models. Astrophys. J. 122, 293 (1955) CrossRefADSMathSciNetGoogle Scholar
  13. E.N. Parker, A solar dynamo surface wave at the interface between convection and nonuniform rotation. Astrophys. J. 408, 707 (1993) CrossRefADSGoogle Scholar
  14. M.R.E. Proctor, Effects of fluctuation on αω dynamo models. Month. Not. R. Astron. Soc.: Lett. 382, L39–L42 (2007) CrossRefADSGoogle Scholar
  15. E.A. Spiegel, N.O. Weiss, Magnetic activity and variations in solar luminosity. Nature 287, 616 (1980) CrossRefADSGoogle Scholar
  16. M. Steenbeck, F. Krause, K.-H. Rädler, Z. Naturforsch 21a, 364 (1966) ADSGoogle Scholar
  17. R.F. Stein, A. Nordlund, Solar surface magneto-convection and dynamo action, in SOLMAG 2002. Proceedings of the Magnetic Coupling of the Solar Atmosphere Euroconference and IAU Colloquium 188, 11–15 June 2002, Santorini, Greece, ed. by H. Sawaya-Lacoste. ESA SP-505, vol. 89 (ESA, Noordwijk, 2002), pp. 83–89 Google Scholar
  18. J.-C. Thelen, Non-linear αω-dynamos driven by magnetic buoyancy. Mon. Not. R. Astron. Soc. 315, 165–183 (2000) CrossRefADSGoogle Scholar
  19. S.M. Tobias, The solar tachocline: Formation, stability and its role in the solar dynamo, in Fluid Dynamics and Dynamos in Astrophysics and Geophysics, ed. by A.M. Soward, C.A. Jones, D.W. Hughes, N.O. Weiss (CRC, Boca Raton, 2005), pp. 193 Google Scholar
  20. S.M. Tobias, N.H. Brummell, T.L. Clune, J. Toomre, Transport and storage of magnetic field by overshooting turbulent compressible convection. Astrophys. J. 549, 1183–1203 (2001) CrossRefADSGoogle Scholar
  21. S.M. Tobias, N.O. Weiss, Stellar dynamos, in Mathematical Aspects of Natural Dynamos, ed. by E. Dormy, A.M. Soward (CRC, Boca Raton, 2007), pp. 281–312 Google Scholar
  22. S.M. Tobias, F. Cattaneo, Dynamo action in complex flows: the quick and the fast. J. Fluid Mech. 601, 101–122 (2008a) MATHCrossRefMathSciNetADSGoogle Scholar
  23. S.M. Tobias, F. Cattaneo, On the limited role of spectra in dynamo theory. Phys. Rev. Lett. 101, 125003 (2008b) CrossRefADSGoogle Scholar
  24. S.M. Tobias, F. Cattaneo, N.H. Brummell, Dynamo action with penetration, rotation and shear. Astrophys. J. 685, 596 (2008) CrossRefADSGoogle Scholar
  25. S.I. Vainshtein, F. Cattaneo, Nonlinear restrictions on dynamo action. Astrophys. J. 393, 165–171 (1992) CrossRefADSGoogle Scholar
  26. E. Vishniac, A. Brandenuburg, An incoherent alpha-omega dynamo in accretion disks. Astrophys. J. 475, 263 (1997) CrossRefADSGoogle Scholar
  27. A. Vögler, M. Schüssler, A solar surface dynamo. Astron. Astrophys. 465, L43–L46 (2007) CrossRefGoogle Scholar
  28. N.O. Weiss, Thompson, Space Sci. Rev. (2008, this issue) Google Scholar

Copyright information

© Springer Science+Business Media, BV 2008

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of LeedsLeedsUK

Personalised recommendations