Skip to main content

The Cathepsin S/Fractalkine Pair: New Players in Spinal Cord Neuropathic Pain Mechanisms

  • Chapter
  • First Online:
  • 836 Accesses

Abstract

A recent major conceptual advance has been the recognition of the importance of immune system-neuronal interactions in the modulation of brain function. One example of which is spinal pain processing in neuropathic states. Mounting evidence supports the hypothesis that pro-inflammatory mediators secreted by microglia modulate nociceptive function in the injured CNS and following peripheral nerve damage. Here we examine the evidence that one such mediator, the lysosomal cysteine protease cathepsin S (CatS), is critical for the maintenance of neuropathic pain and spinal microglia activation in neuropathic pain states. CatS exerts its pro-nociceptive effects via cleavage of the transmembrane chemokine fractalkine (FKN). Under conditions of increased nociception, microglial CatS is responsible for the liberation of neuronal FKN which stimulates p38 MAPK phosphorylation in microglia thereby activating neurons via the release of pro-nociceptive mediators, thus establishing a new role for the CatS/FKN pair in the maintenance of neuropathic hypersensitivity and suggest that CatS inhibition constitutes a novel therapeutic approach for the treatment of chronic pain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CatS:

cathepsin S

FKN:

fractalkine

APCs:

antigen presenting cells

DCs:

dendritic cells

MHC:

major histocompatibility complex

Ii:

invariant chain

CLIP:

class II-associated Ii peptide

HLA-DM:

human leukocyte antigen DM

LHVS:

morpholinurea-leucine-homophenylalanine-vinyl sulfone-phenyl

PNL:

partial sciatic nerve ligation

CCI:

chronic constriction injury

SNL:

spinal nerve ligation

ADAM:

a disintegrin and metalloprotease domain

TACE:

tumour necrosis factor-α converting enzyme

References

  • Bajetto A, Bonavia R, Barbero S, Schettini G (2002) Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. J Neurochem 82:1311–1329.

    Article  PubMed  CAS  Google Scholar 

  • Baldassare JJ, Bi Y, Bellone CJ (1999) The role of p38 mitogen-activated protein kinase in IL-1{beta} transcription. J Immunol 162:5367–5373.

    PubMed  CAS  Google Scholar 

  • Barclay J, Clark AK, Ganju P, Gentry C, Patel S, Wotherspoon G, Buxton F, Song C, Ullah J, Winter J, Fox A, Bevan S, Malcangio M (2007) Role of the cysteine protease cathepsin S in neuropathic hyperalgesia. Pain 130:225–234.

    Article  PubMed  CAS  Google Scholar 

  • Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A, Schall TJ (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385:640–644.

    Article  PubMed  CAS  Google Scholar 

  • Beers C, Burich A, Kleijmeer MJ, Griffith JM, Wong P, Rudensky AY (2005) Cathepsin S controls MHC class II-mediated antigen presentation by epithelial cells in vivo. J Immunol 174:1205–1212.

    PubMed  CAS  Google Scholar 

  • Bekkali Y, Thomson DS, Betageri R, Emmanuel MJ, Hao MH, Hickey E, Liu W, Patel U, Ward YD, Young ERR, Nelson R, Kukulka A, Brown ML, Crane K, White D, Freeman DM, Labadia ME, Wildeson J, Spero DM (2007) Identification of a novel class of succinyl-nitrile-based cathepsin S inhibitors. Bioorgan Med Chem Lett 17:2465–2469.

    Article  CAS  Google Scholar 

  • Blum JS, Cresswell P (1988) Role for intracellular proteases in the processing and transport of class II HLA antigens. PNAS 85:3975–3979.

    Article  PubMed  CAS  Google Scholar 

  • Brzin J, Popovic T, Turk V, Borchart U, Machleidt W (1984) Human cystatin, a new protein inhibitor of cysteine proteinases. Biochem Biophys Res Commun 118:103–109.

    Article  PubMed  CAS  Google Scholar 

  • Caivano M, Cohen P (2000) Role of mitogen-activated protein kinase cascades in mediating lipopolysaccharide-stimulated induction of cyclooxygenase-2 and IL-1{beta} in RAW264 macrophages. J Immunol 164:3018–3025.

    PubMed  CAS  Google Scholar 

  • Chapman GA, Moores K, Harrison D, Campbell CA, Stewart BR, Strijbos PJLM (2000) Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J Neurosci 20:87RC.

    Google Scholar 

  • Chatterjee AK, Liu H, Tully DC, Guo J, Epple R, Russo R, Williams J, Roberts M, Tuntland T, Chang J, Gordon P, Hollenbeck T, Tumanut C, Li J, Harris JL (2007) Synthesis and SAR of succinamide peptidomimetic inhibitors of cathepsin S. Bioorgan Med Chem Lett 17:2899–2903.

    Article  CAS  Google Scholar 

  • Clark AK, D'Aquisto F, Gentry C, Marchand F, McMahon SB, Malcangio M (2006) Rapid co-release of interleukin 1beta and caspase 1 in spinal cord inflammation. J Neurochem 99:868–880.

    Article  PubMed  CAS  Google Scholar 

  • Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F, Dehvari M, Wotherspoon G, Winter J, Ullah J, Bevan S, Malcangio M (2007a) Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. PNAS 104:10655–10660.

    Article  PubMed  CAS  Google Scholar 

  • Clark AK, Gentry C, Bradbury EJ, McMahon SB, Malcangio M (2007b) Role of spinal microglia in rat models of peripheral nerve injury and inflammation. Eur J Pain 11:223–230.

    Article  PubMed  Google Scholar 

  • Costigan M, Befort K, Karchewski L, Griffin RS, D'Urso D, Allchorne A, Sitarski J, Mannion JW, Pratt RE, Woolf CJ (2002) Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci 3:16.

    Article  PubMed  Google Scholar 

  • Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021.

    Article  PubMed  CAS  Google Scholar 

  • Coyle DE (1998) Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior. Glia 23:75–83.

    Article  PubMed  CAS  Google Scholar 

  • Denzin LK, Cresswell P (1995) HLA-DM induces clip dissociation from MHC class II [alpha][beta] dimers and facilitates peptide loading. Cell 82:155–165.

    Article  PubMed  CAS  Google Scholar 

  • Driessen C, Bryant RAR, Lennon-Dumenil AM, Villadangos JA, Bryant PW, Shi GP, Chapman HA, Ploegh HL (1999) Cathepsin S controls the trafficking and maturation of MHC class II molecules in dendritic cells. J Cell Biol 147:775–790.

    Article  PubMed  CAS  Google Scholar 

  • Garton KJ, Gough PJ, Blobel CP, Murphy G, Greaves DR, Dempsey PJ, Raines EW (2001) Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem 276:37993–38001.

    PubMed  CAS  Google Scholar 

  • Gauthier JY, Black WC, Courchesne I, Cromlish W, Desmarais S, Houle R, Lamontagne S, Li CS, Massq F, McKay DJ, Ouellet M, Robichaud J, Truchon JF, Truong VL, Wang Q, Percival MD (2007) The identification of potent, selective, and bioavailable cathepsin S inhibitors. Bioorgan Med Chem Lett 17:4929–4933.

    Article  CAS  Google Scholar 

  • Ghosh P, Amaya M, Mellins E, Wiley DC (1995) The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3. Nature 378:457–462.

    Article  PubMed  CAS  Google Scholar 

  • Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit WJ, Salafranca MN, Adhikari S, Thompson DA, Botti P, Bacon KB, Feng L (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. PNAS 95:10896–10901.

    Article  PubMed  CAS  Google Scholar 

  • Hughes PM, Botham MS, Frentzel S, Mir A, Perry VH (2002) Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS. Glia 37:314–327.

    Article  PubMed  Google Scholar 

  • Hundhausen C, Misztela D, Berkhout TA, Broadway N, Saftig P, Reiss K, Hartmann D, Fahrenholz F, Postina R, Matthews V, Kallen KJ, Rose-John S, Ludwig A (2003) The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 102:1186–1195.

    Article  PubMed  CAS  Google Scholar 

  • Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, Kakizaki M, Takagi S, Nomiyama H, Schall TJ, Yoshie O (1997) Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91:521–530.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki H, Tsuruoka H, Hornsby M, Lesley SA, Spraggon G, Ellman JA (2007) Characterization and optimization of selective, nonpeptidic inhibitors of cathepsin S with an unprecedented binding mode. J Med Chem 50:2693–2699.

    Article  PubMed  CAS  Google Scholar 

  • Irie O, Kosaka T, Ehara T, Yokokawa F, Kanazawa T, Hirao H, Iwasaki A, Sakaki J, Teno N, Hitomi Y, Iwasaki G, Fukaya H, Nonomura K, Tanabe K, Koizumi S, Uchiyama N, Bevan SJ, Malcangio M, Gentry C, Fox AJ, Yaqoob M, Culshaw A J, Hallett A (2008a) Discovery of orally bioavailable cathepsin S inhibitors for the reversal of neuropathic pain. J Med Chem.

    Google Scholar 

  • Irie O, Ehara T, Iwasaki A, Yokokawa F, Sakaki J, Hirao H, Kanazawa T, Teno N, Horiuchi M, Umemura I, Gunji H, Masuya K, Hitomi Y, Iwasaki G, Nonomura K, Tanabe K, Fukaya H, Kosaka T, Snell CR, Hallett A (2008b) Discovery of selective and nonpeptidic cathepsin S inhibitors. Bioorgan Med Chem Lett 51:5502–5505.

    CAS  Google Scholar 

  • Jin SX, Zhuang ZY, Woolf CJ, Ji RR (2003) p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci 23:4017–4022.

    PubMed  CAS  Google Scholar 

  • Kim SH, Smith CJ, Van Eldik LJ (2004) Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1[beta] production. Neurobiol Aging 25:431–439.

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Yamashita T, Yamaguchi A, Hosokawa K, Tohyama M (2002) Analysis of genes induced in peripheral nerve after axotomy using cDNA microarrays. J Neurochem 82:1129–1136.

    Article  PubMed  CAS  Google Scholar 

  • Lindia JA, McGowan E, Jochnowitz N, Abbadie C (2005) Induction of CX3CL1 expression in astrocytes and CX3CR1 in microglia in the spinal cord of a rat model of neuropathic pain. J Pain 6:434–438.

    Article  PubMed  CAS  Google Scholar 

  • Liu GY, Kulasingam V, Alexander RT, Touret N, Fong AM, Patel DD, Robinson LA (2005) Recycling of the membrane-anchored chemokine, CX3CL1. J Biol Chem 280:19858–19866.

    Article  PubMed  CAS  Google Scholar 

  • Liuzzo JP, Petanceska SS, Devi LA (1999a) Neurotrophic factors regulate cathepsin S in macrophages and microglia: a role in the degradation of myelin basic protein and amyloid beta peptide. Mol Med 5:334–343.

    PubMed  CAS  Google Scholar 

  • Liuzzo JP, Petanceska SS, Moscatelli D, Devi LA (1999b) Inflammatory mediators regulate cathepsin S in macrophages and microglia: a role in attenuating heparan sulfate interactions. Mol Med 5:320–333.

    PubMed  CAS  Google Scholar 

  • Milligan ED, Zapata V, Chacur M, Schoeniger D, Biedenkapp J, O'Connor KA, Verge GM, Chapman G, Green P, Foster AC, Naeve GS, Maier SF, Watkins LR (2004) Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur J Neurosci 20:2294–2302.

    Article  PubMed  CAS  Google Scholar 

  • Milligan E, Zapata V, Schoeniger D, Chacur M, Green P, Poole S, Martin D, Maier SF, Watkins LR (2005) An initial investigation of spinal mechanisms underlying pain enhancement induced by fractalkine, a neuronally released chemokine. Eur J Neurosci 22:2775–2782.

    Article  PubMed  CAS  Google Scholar 

  • Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176.

    CAS  Google Scholar 

  • Nakagawa TY, Brissette WH, Lira PD, Griffiths RJ, Petrushova N, Stock J, McNeish JD, Eastman SE, Howard ED, Clarke SRM (1999) Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 10:207–217.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyori A, Minami M, Ohtani Y, Takami S, Yamamoto J, Kawaguchi N, Kume T, Akaike A, Satoh M (1998) Localization of fractalkine and CX3CR1 mRNAs in rat brain: does fractalkine play a role in signaling from neuron to microglia? FEBS Lett 429:167–172.

    Article  PubMed  CAS  Google Scholar 

  • Owolabi SA, Saab CY (2006) Fractalkine and minocycline alter neuronal activity in the spinal cord dorsal horn. FEBS Lett 580:4306–4310.

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Lloyd C, Zhou H, Dolich S, Deeds J, Gonzalo JA, Vath J, Gosselin M, Ma J, Dussault B, Woolf E, Alperin G, Culpepper J, Gutierrez-Ramos JC, Gearing D (1997) Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 387:611–617.

    Article  PubMed  CAS  Google Scholar 

  • Petanceska S, Devi L (1992) Sequence analysis, tissue distribution, and expression of rat cathepsin S. J Biol Chem 267:26038–26043.

    PubMed  CAS  Google Scholar 

  • Petanceska S, Burke S, Watson SJ, Devi L (1994) Differential distribution of messenger RNAs for cathepsins B, L and S in adult rat brain: an in situ hybridization study. Neuroscience 59:729–738.

    Article  PubMed  CAS  Google Scholar 

  • Petanceska S, Canoll P, Devi LA (1996) Expression of rat cathepsin S in phagocytic cells. J Biol Chem 271:4403–4409.

    Article  PubMed  CAS  Google Scholar 

  • Pierre P, Mellman I (1998) Developmental regulation of invariant chain proteolysis controls MHC class II trafficking in mouse dendritic cells. Cell 93:1135–1145.

    Article  PubMed  CAS  Google Scholar 

  • Riese RJ, Mitchell RN, Villadangos JA, Shi GP, Palmer JT, Karp ER, De Sanctis GT, Ploegh HL, Chapman HA (1998) Cathepsin S activity regulates antigen presentation and immunity. J Clin Invest 101:2351–2363.

    Article  PubMed  CAS  Google Scholar 

  • Riese RJ, Wolf PR, Bromme D, Natkin LR, Villadangos JA, Ploegh HL, Chapman HA (1996) Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading. Immunity 4:357–366.

    Article  PubMed  CAS  Google Scholar 

  • Roche PA, Cresswell P (1990) Invariant chain association with HLA-DR molecules inhibits immunogenic peptide binding. Nature 345:615–618.

    Article  PubMed  CAS  Google Scholar 

  • Roche PA, Cresswell P (1991) Proteolysis of the class II-associated invariant chain generates a peptide binding site in intracellular HLA-DR molecules. PNAS 88:3150–3154.

    Article  PubMed  CAS  Google Scholar 

  • Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368.

    Article  PubMed  CAS  Google Scholar 

  • Schwaeble WJ, Stover CM, Schall TJ, Dairaghi DJ, Trinder PKE, Linington C, Iglesias A, Schubart A, Lynch NJ, Weihe E, Schafer MK (1998) Neuronal expression of fractalkine in the presence and absence of inflammation. FEBS Lett 439:203–207.

    Article  PubMed  CAS  Google Scholar 

  • Sherman MA, Weber DA, Jensen PE (1995) DM enhances peptide binding to class II MHC by release of invariant chain-derived peptide. Immunity 3:197–205.

    Article  PubMed  CAS  Google Scholar 

  • Shi GP, Munger JS, Meara JP, Rich DH, Chapman HA (1992) Molecular cloning and expression of human alveolar macrophage cathepsin S, an elastinolytic cysteine protease. J Biol Chem 267:7258–7262.

    PubMed  CAS  Google Scholar 

  • Shi GP, Villadangos JA, Dranoff G, Small C, Gu L, Haley KJ, Riese R, Ploegh HL, Chapman HA (1999) Cathepsin S required for normal MHC class II peptide loading and germinal center development. Immunity 10:197–206.

    Article  PubMed  CAS  Google Scholar 

  • Sloan VS, Cameron P, Porter G, Gammon M, Amaya M, Mellins E, Zaller DM (1995) Mediation by HLA-DM of dissociation of peptides from HLA-DR. Nature 375:802–806.

    Article  PubMed  CAS  Google Scholar 

  • Thacker MA, Clark AK, Marchand F, McMahon SB (2007) Pathophysiology of peripheral neuropathic pain: immune cells and molecules. Anesth Analg 105:838–847.

    Article  PubMed  Google Scholar 

  • Tsou CL, Haskell CA, Charo IF (2001) Tumor necrosis factor-alpha-converting enzyme mediates the inducible cleavage of fractalkine. J Biol Chem 276:44622–44626.

    Article  PubMed  CAS  Google Scholar 

  • Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783.

    Article  PubMed  CAS  Google Scholar 

  • Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, Koizumi S, Inoue K (2004) Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia 45:89–95.

    Article  PubMed  Google Scholar 

  • Turnsek T, Kregar I, Lebez D (1975) Acid sulphydryl protease from calf lymph nodes. Biochimica et Biophysica Acta (BBA) – Enzymology 403:514–520.

    Article  CAS  Google Scholar 

  • Valder CR, Liu JJ, Song YH, Luo ZD (2003) Coupling gene chip analyses and rat genetic variances in identifying potential target genes that may contribute to neuropathic allodynia development. J Neurochem 87:560–573.

    Article  PubMed  CAS  Google Scholar 

  • Vasiljeva O, Dolinar M, Pungercar JR, Turk V, Turk B (2005) Recombinant human procathepsin S is capable of autocatalytic processing at neutral pH in the presence of glycosaminoglycans. FEBS Lett 579:1285–1290.

    Article  PubMed  CAS  Google Scholar 

  • Verge GM, Milligan ED, Maier SF, Watkins LR, Naeve GS, Foster AC (2004) Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur J Neurosci 20:1150–1160.

    Article  PubMed  Google Scholar 

  • Villadangos JA, Riese RJ, Peters C, Chapman HA, Ploegh HL (1997) Degradation of mouse invariant chain: roles of cathepsins S and D and the influence of major histocompatibility complex polymorphism. J Exp Med 186:549–560.

    Article  PubMed  CAS  Google Scholar 

  • Ward YD, Thomson DS, Frye LL, Cywin CL, Morwick T, Emmanuel MJ, Zindell R, McNeil D, Bekkali Y, Girardot M, Hrapchak M, DeTuri M, Crane K, White D, Pav S, Wang Y, Hao MH, Grygon CA, Labadia ME, Freeman DM, Davidson W, Hopkins JL, Brown ML, Spero DM (2002) Design and synthesis of dipeptide nitriles as reversible and potent cathepsin S inhibitors. J Med Chem 45:5471–5482.

    Article  PubMed  CAS  Google Scholar 

  • Wei J, Pio BA, Cai H, Meduna SP, Sun S, Gu Y, Jiang W, Thurmond RL, Karlsson L, Edwards JP (2007) Pyrazole-based cathepsin S inhibitors with improved cellular potency. Bioorgan Med Chem Lett 17:5525–5528.

    Article  CAS  Google Scholar 

  • Zhuang ZY, Kawasaki Y, Tan PH, Wen YR, Huang J, Ji RR (2007) Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine. Brain Behav Immun 21:642–651.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna K. Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Clark, A.K., Malcangio, M. (2009). The Cathepsin S/Fractalkine Pair: New Players in Spinal Cord Neuropathic Pain Mechanisms. In: Malcangio, M. (eds) Synaptic Plasticity in Pain. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0226-9_22

Download citation

Publish with us

Policies and ethics