Skip to main content

Spinal Dynorphin and Neuropathic Pain

  • Chapter
  • First Online:
  • 847 Accesses

Abstract

The endogenous neuropeptides dynorphins are proteolytic products of prodynorphin which are characterized by their high affinity for opioid receptors. Dynorphin A is widely distributed in the CNS and in the spinal cord is found predominantly in neurons of laminae I/II and V. Intrathecal dynorphin A displays predominantly non-opioid activities which can be reversed by NMDA antagonists as well as by bradykinin B2 receptor antagonists. The levels of spinal dynorphin expression can be easily perturbed; elevated levels of dynorphin A in the spinal cord are essential for the expression of chronic pain. Descending modulatory pain pathways from the rostral ventromedial medulla contribute to dynorphin up-regulation and the maintenance of neuropathic pain. Recovery from neuropathic pain may depend not only on recovery from the peripheral injury but also on reversing the injury-induced adaptive changes to the central nervous system such as dynorphin up-regulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

cAMP:

cyclic adenosine monophosphate

CGRP:

calcitonin gene-related peptide

DALBK:

des-Arg9Leu-bradykinin

DLF:

dorsolateral funiculus

DREAM:

downstream regulatory element antagonistic modulator

DRG:

dorsal root ganglion

i.c.v.:

intracerebroventricularly

i.t.:

intrathecally

NMDA:

N-methyl-d-aspartate

NPY:

neuropeptide Y

RVM:

rostral ventral medulla

SNL:

spinal nerve ligation

References

  • Abraham KE, McGinty JF, Brewer KL. The role of kainic acid/AMPA and metabotropic glutamate receptors in the regulation of opioid mRNA expression and the onset of pain-related behavior following excitotoxic spinal cord injury. Neuroscience, 2001; 104: 863–74.

    Article  PubMed  CAS  Google Scholar 

  • Altier C, Zamponi GW. Opioid, cheating on its receptors, exacerbates pain. Nat Neurosci, 2006; 9: 1465–7.

    Article  PubMed  CAS  Google Scholar 

  • Botticelli LJ, Cox BM, Goldstein A. Immunoreactive dynorphin in mammalian spinal cord and dorsal root ganglia. Proc Natl Acad Sci USA, 1981; 78: 7783–6.

    Article  PubMed  CAS  Google Scholar 

  • Brauneis U, Oz M, Peoples RW, Weight FF, Zhang L. Differential sensitivity of recombinant N-methyl-d-aspartate receptor subunits to inhibition by dynorphin. J Pharmacol Exp Ther, 1996; 279: 1063–8.

    PubMed  CAS  Google Scholar 

  • Burgess SE, Gardell LR, Ossipov MH, Malan TP, Jr., Vanderah TW, Lai J, Porreca F. Time-dependent descending facilitation from the rostral ventromedial medulla maintains, but does not initiate, neuropathic pain. J Neurosci, 2002; 22: 5129–36.

    PubMed  CAS  Google Scholar 

  • Carlton SM, Hayes ES. Dynorphin A(1–8) immunoreactive cell bodies, dendrites and terminals are postsynaptic to calcitonin gene-related peptide primary afferent terminals in the monkey dorsal horn. Brain Res, 1989; 504: 124–8.

    Article  PubMed  CAS  Google Scholar 

  • Chavkin C, James IF, Goldstein A. Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science, 1982; 215: 413–5.

    Article  PubMed  CAS  Google Scholar 

  • Cheng HY, Pitcher GM, Laviolette SR, Whishaw IQ, Tong KI, Kockeritz LK, Wada T, Joza NA, Crackower M, Goncalves J, Sarosi I, Woodgett JR, Oliveira-dos-Santos AJ, Ikura M, van der Kooy D, Salter MW, Penninger JM. DREAM is a critical transcriptional repressor for pain modulation. Cell, 2002; 108: 31–43.

    Article  PubMed  CAS  Google Scholar 

  • Cho HJ, Basbaum AI. Increased staining of immunoreactive dynorphin cell bodies in the deafferented spinal cord of the rat. Neurosci Lett, 1988; 84: 125–30.

    Article  PubMed  CAS  Google Scholar 

  • Civelli O, Douglass J, Goldstein A, Herbert E. Sequence and expression of the rat prodynorphin gene. Proc Natl Acad Sci USA, 1985; 82: 4291–5.

    Article  PubMed  CAS  Google Scholar 

  • Cruz L, Basbaum AI. Multiple opioid peptides and the modulation of pain: immunohistochemical analysis of dynorphin and enkephalin in the trigeminal nucleus caudalis and spinal cord of the cat. J Comp Neurol, 1985; 240: 331–48.

    Article  PubMed  CAS  Google Scholar 

  • D'Mello R, Dickenson AH. Spinal cord mechanisms of pain. Br J Anaesth, 2008; 101: 8–16.

    Article  PubMed  Google Scholar 

  • Dumont M, Lemaire S. Dynorphin potentiation of [3H]CGP-39653 binding to rat brain membranes. Eur J Pharmacol, 1994; 271: 241–4.

    Article  PubMed  CAS  Google Scholar 

  • Faden AI. Dynorphin increases extracellular levels of excitatory amino acids in the brain through a non-opioid mechanism. J Neurosci, 1992; 12: 425–9.

    PubMed  CAS  Google Scholar 

  • Faden AI. Opioid and nonopioid mechanisms may contribute to dynorphin's pathophysiological actions in spinal cord injury. Ann Neurol, 1990; 27: 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Faden AI, Jacobs TP. Dynorphin-related peptides cause motor dysfunction in the rat through a non-opiate action. Br J Pharmacol, 1984; 81: 271–6.

    PubMed  CAS  Google Scholar 

  • Faden AI, Molineaux CJ, Rosenberger JG, Jacobs TP, Cox BM. Increased dynorphin immunoreactivity in spinal cord after traumatic injury. Regul Pept, 1985; 11: 35–41.

    Article  PubMed  CAS  Google Scholar 

  • Gardell LR, Burgess SE, Dogrul A, Ossipov MH, Malan TP, Lai J, Porreca F. Pronociceptive effects of spinal dynorphin promote cannabinoid-induced pain and antinociceptive tolerance. Pain, 2002; 98: 79–88.

    Article  PubMed  CAS  Google Scholar 

  • Garzon J, Sanchez-Blazquez P, Gerhart J, Loh HH, Lee NM. Dynorphin-1–13: interaction with other opiate ligand bindings in vitro. Brain Res, 1984; 302: 392–6.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L. Dynorphin-(1–13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci USA, 1979; 76: 6666–70.

    Article  PubMed  CAS  Google Scholar 

  • Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature, 1975; 258: 577–80.

    Article  PubMed  CAS  Google Scholar 

  • Huidobro-Toro JP, Yoshimura K, Lee NM, Loh HH, Way EL. Dynorphin interaction at the kappa-opiate site. Eur J Pharmacol, 1981; 72: 265–6.

    Article  PubMed  CAS  Google Scholar 

  • Ji RR, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci, 2003; 26: 696–705.

    Article  PubMed  CAS  Google Scholar 

  • Kajander KC, Sahara Y, Iadarola MJ, Bennett GJ. Dynorphin increases in the dorsal spinal cord in rats with a painful peripheral neuropathy. Peptides, 1990; 11: 719–28.

    Article  PubMed  CAS  Google Scholar 

  • Lai J, Luo MC, Chen Q, Ma S, Gardell LR, Ossipov MH, Porreca F. Dynorphin A activates bradykinin receptors to maintain neuropathic pain. Nat Neurosci, 2006; 9: 1534–40.

    Article  PubMed  CAS  Google Scholar 

  • Lai J, Luo MC, Chen Q, Porreca F. Pronociceptive actions of dynorphin via bradykinin receptors. Neurosci Lett, 2008; 437: 175–9.

    Article  PubMed  CAS  Google Scholar 

  • Lai J, Ossipov MH, Vanderah TW, Malan TP, Jr., Porreca F. Neuropathic pain: the paradox of dynorphin. Mol Interv, 2001; 1: 160–7.

    PubMed  CAS  Google Scholar 

  • Laughlin TM, Vanderah TW, Lashbrook J, Nichols ML, Ossipov M, Porreca F, Wilcox GL. Spinally administered dynorphin A produces long-lasting allodynia: involvement of NMDA but not opioid receptors. Pain, 1997; 72: 253–60.

    Article  PubMed  CAS  Google Scholar 

  • Lima D, Avelino A, Coimbra A. Morphological characterization of marginal (lamina I) neurons immunoreactive for substance P, enkephalin, dynorphin and gamma-aminobutyric acid in the rat spinal cord. J Chem Neuroanat, 1993; 6: 43–52.

    Article  PubMed  CAS  Google Scholar 

  • Long JB, Petras JM, Mobley WC, Holaday JW. Neurological dysfunction after intrathecal injection of dynorphin A (1–13) in the rat. II. Nonopioid mechanisms mediate loss of motor, sensory and autonomic function. J Pharmacol Exp Ther, 1988; 246: 1167–74.

    PubMed  CAS  Google Scholar 

  • Lough C, Young T, Parker R, Wittenauer S, Vincler M. Increased spinal dynorphin contributes to chronic nicotine-induced mechanical hypersensitivity in the rat. Neurosci Lett, 2007; 422: 54–8.

    Article  PubMed  CAS  Google Scholar 

  • Luo MC, Chen Q, Porreca F, Lai J. Dynorphin maintains inflammatory hyperalgesia by the activation of spinal bradykinin receptors. Journal of Pain, 2008; 9(12): 1096–1105.

    Google Scholar 

  • Malan TP, Ossipov MH, Gardell LR, Ibrahim M, Bian D, Lai J, Porreca F. Extraterritorial neuropathic pain correlates with multisegmental elevation of spinal dynorphin in nerve-injured rats. Pain, 2000; 86: 185–94.

    Article  PubMed  CAS  Google Scholar 

  • Mason P. Ventromedial medulla: pain modulation and beyond. J Comp Neurol, 2005; 493: 2–8.

    Article  PubMed  Google Scholar 

  • Massardier D, Hunt PF. A direct non-opiate interaction of dynorphin-(1–13) with the N-methyl-d-aspartate (NMDA) receptor. Eur J Pharmacol, 1989; 170: 125–6.

    Article  PubMed  CAS  Google Scholar 

  • Miller KE, Seybold VS. Comparison of met-enkephalin-, dynorphin A-, and neurotensin-immunoreactive neurons in the cat and rat spinal cords: I. Lumbar cord. J Comp Neurol, 1987; 255: 293–304.

    Article  PubMed  CAS  Google Scholar 

  • Miura M, Inui A, Sano K, Ueno N, Teranishi A, Hirosue Y, Nakajima M, Okita M, Togami J, Koshiya K, et al. Dynorphin binds to neuropeptide Y and peptide YY receptors in human neuroblastoma cell lines. Am J Physiol, 1994; 267: E702–9.

    PubMed  CAS  Google Scholar 

  • Nahin RL. Immunocytochemical identification of long ascending peptidergic neurons contributing to the spinoreticular tract in the rat. Neuroscience, 1987; 23: 859–69.

    Article  PubMed  CAS  Google Scholar 

  • Nahin RL. Immunocytochemical identification of long ascending, peptidergic lumbar spinal neurons terminating in either the medial or lateral thalamus in the rat. Brain Res, 1988; 443: 345–9.

    Article  PubMed  CAS  Google Scholar 

  • Nahin RL, Hylden JL, Iadarola MJ, Dubner R. Peripheral inflammation is associated with increased dynorphin immunoreactivity in both projection and local circuit neurons in the superficial dorsal horn of the rat lumbar spinal cord. Neurosci Lett, 1989; 96: 247–52.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi K, Kowalski K, Traub R, Solodkin A, Iadarola MJ, Ruda MA. Dynorphin expression and Fos-like immunoreactivity following inflammation induced hyperalgesia are colocalized in spinal cord neurons. Brain Res, 1991; 10: 227–33.

    Article  CAS  Google Scholar 

  • Ossipov MH, Bazov I, Gardell LR, Kowal J, Yakovleva T, Usynin I, Ekstrom TJ, Porreca F, Bakalkin G. Control of chronic pain by the ubiquitin proteasome system in the spinal cord. J Neurosci, 2007; 27: 8226–37.

    Article  PubMed  CAS  Google Scholar 

  • Peters CM, Lindsay TH, Pomonis JD, Luger NM, Ghilardi JR, Sevcik MA, Mantyh PW. Endothelin and the tumorigenic component of bone cancer pain. Neuroscience, 2004; 126: 1043–52.

    Article  PubMed  CAS  Google Scholar 

  • Piercey MF, Varner K, Schroeder LA. Analgesic activity of intraspinally administered dynorphin and ethylketocyclazocine. Eur J Pharmacol, 1982; 80: 283–4.

    Article  PubMed  CAS  Google Scholar 

  • Porreca F, Burgess SE, Gardell LR, Vanderah TW, Malan TP, Jr., Ossipov MH, Lappi DA, Lai J. Inhibition of neuropathic pain by selective ablation of brainstem medullary cells expressing the mu-opioid receptor. J Neurosci, 2001; 21: 5281–8.

    PubMed  CAS  Google Scholar 

  • Quillan JM, Sadee W. Dynorphin peptides: antagonists of melanocortin receptors. Pharm Res, 1997; 14: 713–9.

    Article  PubMed  CAS  Google Scholar 

  • Reisch N, Engler A, Aeschlimann A, Simmen BR, Michel BA, Gay RE, Gay S, Sprott H. DREAM is reduced in synovial fibroblasts of patients with chronic arthritic pain: is it a suitable target for peripheral pain management? Arthritis Res Ther, 2008; 10: R60.

    Article  PubMed  Google Scholar 

  • Rossier J. Opioid peptides have found their roots. Nature, 1982; 298: 221–2.

    Article  PubMed  CAS  Google Scholar 

  • Ruda MA, Iadarola MJ, Cohen LV, Young WS, 3rd. In situ hybridization histochemistry and immunocytochemistry reveal an increase in spinal dynorphin biosynthesis in a rat model of peripheral inflammation and hyperalgesia. Proc Natl Acad Sci USA, 1988; 85: 622–6.

    Article  PubMed  CAS  Google Scholar 

  • Sasek CA, Elde RP. Coexistence of enkephalin and dynorphin immunoreactivities in neurons in the dorsal gray commissure of the sixth lumbar and first sacral spinal cord segments in rat. Brain Res, 1986; 381: 8–14.

    Article  PubMed  CAS  Google Scholar 

  • Sasek CA, Seybold VS, Elde RP. The immunohistochemical localization of nine peptides in the sacral parasympathetic nucleus and the dorsal gray commissure in rat spinal cord. Neuroscience, 1984; 12: 855–73.

    Article  PubMed  CAS  Google Scholar 

  • Shukla VK, Bansinath M, Dumont M, Lemaire S. Selective involvement of kappa opioid and phencyclidine receptors in the analgesic and motor effects of dynorphin-A-(1–13)-Tyr-Leu-Phe-Asn-Gly-Pro. Brain Res, 1992; 591: 176–80.

    Article  PubMed  CAS  Google Scholar 

  • Skilling SR, Sun X, Kurtz HJ, Larson AA. Selective potentiation of NMDA-induced activity and release of excitatory amino acids by dynorphin: possible roles in paralysis and neurotoxicity. Brain Res, 1992; 575: 272–8.

    Article  PubMed  CAS  Google Scholar 

  • Smith AP, Lee NM. Pharmacology of dynorphin. Annu Rev Pharmacol Toxicol, 1988; 28: 123–40.

    Article  PubMed  CAS  Google Scholar 

  • Stevens CW, Yaksh TL. Dynorphin A and related peptides administered intrathecally in the rat: a search for putative kappa opiate receptor activity. J Pharmacol Exp Ther, 1986; 238: 833–8.

    PubMed  CAS  Google Scholar 

  • Suzuki R, Dickenson A. Spinal and supraspinal contributions to central sensitization in peripheral neuropathy. Neurosignals, 2005; 14: 175–81.

    Article  PubMed  CAS  Google Scholar 

  • Tachibana T, Miki K, Fukuoka T, Arakawa A, Taniguchi M, Maruo S, Noguchi K. Dynorphin mRNA expression in dorsal horn neurons after traumatic spinal cord injury: temporal and spatial analysis using in situ hybridization. J Neurotrauma, 1998; 15: 485–94.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi O, Shiosaka S, Traub RJ, Ruda MA. Ultrastructural demonstration of synaptic connections between calcitonin gene-related peptide immunoreactive axons and dynorphin A(1–8) immunoreactive dorsal horn neurons in a rat model of peripheral inflammation and hyperalgesia. Peptides, 1990; 11: 1233–7.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi O, Traub RJ, Ruda MA. Demonstration of calcitonin gene-related peptide immunoreactive axons contacting dynorphin A(1–8) immunoreactive spinal neurons in a rat model of peripheral inflammation and hyperalgesia. Brain Res, 1988; 475: 168–72.

    Article  PubMed  CAS  Google Scholar 

  • Tan-No K, Esashi A, Nakagawasai O, Niijima F, Tadano T, Sakurada C, Sakurada T, Bakalkin G, Terenius L, Kisara K. Intrathecally administered big dynorphin, a prodynorphin-derived peptide, produces nociceptive behavior through an N-methyl-d-aspartate receptor mechanism. Brain Res, 2002; 952: 7–14.

    Article  PubMed  CAS  Google Scholar 

  • Tang Q, Gandhoke R, Burritt A, Hruby VJ, Porreca F, Lai J. High-affinity interaction of (des-Tyrosyl) dynorphin A(2–17) with NMDA receptors. J Pharmacol Exp Ther, 1999; 291: 760–5.

    PubMed  CAS  Google Scholar 

  • Vanderah TW, Gardell LR, Burgess SE, Ibrahim M, Dogrul A, Zhong CM, Zhang ET, Malan TP, Jr., Ossipov MH, Lai J, Porreca F. Dynorphin promotes abnormal pain and spinal opioid antinociceptive tolerance. J Neurosci, 2000; 20: 7074–9.

    PubMed  CAS  Google Scholar 

  • Vanderah TW, Laughlin T, Lashbrook JM, Nichols ML, Wilcox GL, Ossipov MH, Malan TP, Jr., Porreca F. Single intrathecal injections of dynorphin A or des-Tyr-dynorphins produce long-lasting allodynia in rats: blockade by MK-801 but not naloxone. Pain, 1996; 68: 275–81.

    Article  PubMed  CAS  Google Scholar 

  • Vanderah TW, Suenaga NM, Ossipov MH, Malan TP, Jr., Lai J, Porreca F. Tonic descending facilitation from the rostral ventromedial medulla mediates opioid-induced abnormal pain and antinociceptive tolerance. J Neurosci, 2001; 21: 279–86.

    PubMed  CAS  Google Scholar 

  • Vera-Portocarrero LP, Xie JY, Kowal J, Ossipov MH, King T, Porreca F. Descending facilitation from the rostral ventromedial medulla maintains visceral pain in rats with experimental pancreatitis. Gastroenterology, 2006; 130: 2155–64.

    Article  PubMed  Google Scholar 

  • Vidal C, Maier R, Zieglgansberger W. Effects of dynorphin A (1–17), dynorphin A (1–13) and D-ala2-D-leu5-enkephalin on the excitability of pyramidal cells in CA1 and CA2 of the rat hippocampus in vitro. Neuropeptides, 1984; 5: 237–40.

    Article  PubMed  CAS  Google Scholar 

  • Wagner R, Deleo JA. Pre-emptive dynorphin and N-methyl-d-aspartate glutamate receptor antagonism alters spinal immunocytochemistry but not allodynia following complete peripheral nerve injury. Neuroscience, 1996; 72: 527–34.

    Article  PubMed  CAS  Google Scholar 

  • Wagner R, DeLeo JA, Coombs DW, Willenbring S, Fromm C. Spinal dynorphin immunoreactivity increases bilaterally in a neuropathic pain model. Brain Res, 1993; 629: 323–6.

    Article  PubMed  CAS  Google Scholar 

  • Walker JM, Katz RJ, Akil H. Behavioral effects of dynorphin 1–13 in the mouse and rat: initial observations. Peptides, 1980; 1: 341–5.

    Article  PubMed  CAS  Google Scholar 

  • Walker JM, Moises HC, Coy DH, Baldrighi G, Akil H. Nonopiate effects of dynorphin and des-Tyr-dynorphin. Science, 1982a; 218: 1136–8.

    Article  PubMed  CAS  Google Scholar 

  • Walker JM, Moises HC, Coy DH, Young EA, Watson SJ, Akil H. Dynorphin (1–17): lack of analgesia but evidence for non-opiate electrophysiological and motor effects. Life Sci, 1982b; 31: 1821–4.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Gardell LR, Ossipov MH, Vanderah TW, Brennan MB, Hochgeschwender U, Hruby VJ, Malan TP, Jr., Lai J, Porreca F. Pronociceptive actions of dynorphin maintain chronic neuropathic pain. J Neurosci, 2001; 21: 1779–86.

    PubMed  CAS  Google Scholar 

  • Watson SJ, Khachaturian H, Akil H, Coy DH, Goldstein A. Comparison of the distribution of dynorphin systems and enkephalin systems in brain. Science, 1982; 218: 1134–6.

    Article  PubMed  CAS  Google Scholar 

  • Weihe E, Millan MJ, Hollt V, Nohr D, Herz A. Induction of the gene encoding pro-dynorphin by experimentally induced arthritis enhances staining for dynorphin in the spinal cord of rats. Neuroscience, 1989; 31: 77–95.

    Article  PubMed  CAS  Google Scholar 

  • Winkler T, Sharma HS, Gordh T, Badgaiyan RD, Stalberg E, Westman J. Topical application of dynorphin A (1–17) antiserum attenuates trauma induced alterations in spinal cord evoked potentials, microvascular permeability disturbances, edema formation and cell injury: an experimental study in the rat using electrophysiological and morphological approaches. Amino Acids, 2002; 23: 273–81.

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Petraschka M, McLaughlin JP, Westenbroek RE, Caron MG, Lefkowitz RJ, Czyzyk TA, Pintar JE, Terman GW, Chavkin C. Neuropathic pain activates the endogenous kappa opioid system in mouse spinal cord and induces opioid receptor tolerance. J Neurosci, 2004; 24: 4576–84.

    Article  PubMed  CAS  Google Scholar 

  • Young EA, Walker JM, Houghten R, Akil H. The degradation of dynorphin A in brain tissue in vivo and in vitro. Peptides, 1987; 8: 701–7.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Peoples RW, Oz M, Harvey-White J, Weight FF, Brauneis U. Potentiation of NMDA receptor-mediated responses by dynorphin at low extracellular glycine concentrations. J Neurophysiol, 1997; 78: 582–90.

    PubMed  CAS  Google Scholar 

  • Zhang S, Tong Y, Tian M, Dehaven RN, Cortesburgos L, Mansson E, Simonin F, Kieffer B, Yu L. Dynorphin A as a potential endogenous ligand for four members of the opioid receptor gene family. J Pharmacol Exp Ther, 1998; 286: 136–41.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work presented in this review has been supported by grants from the National Institute on Drug Abuse (F.P.) and the National Institute of Dental and Craniofacial Research (J.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Porreca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lai, J., Wang, R., Porreca, F. (2009). Spinal Dynorphin and Neuropathic Pain. In: Malcangio, M. (eds) Synaptic Plasticity in Pain. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0226-9_16

Download citation

Publish with us

Policies and ethics