Ecotoxicological Applications of Dynamic Energy Budget Theory

  • Sebastiaan A. L. M. Kooijman
  • Jan Baas
  • Daniel Bontje
  • Mieke Broerse
  • Cees A. M. van Gestel
  • Tjalling Jager
Part of the Emerging Topics in Ecotoxicology book series (ETEP, volume 2)


The dynamic energy budget (DEB) theory for metabolic organisation specifies quantitatively the processes of uptake of substrate by organisms and its use for the purpose of maintenance, growth, maturation and reproduction. It applies to all organisms. Animals are special because they typically feed on other organisms. This couples the uptake of the different required substrates, and their energetics can, therefore, be captured realistically with a single reserve and a single structure compartment in biomass. Effects of chemical compounds (e.g. toxicants) are included by linking parameter values to internal concentrations. This involves a toxico-kinetic module that is linked to the DEB, in terms of uptake, elimination and (metabolic) transformation of the compounds. The core of the kinetic module is the simple one-compartment model, but extensions and modifications are required to link it to DEBs. We discuss how these extensions relate to each other and how they can be organised in a coherent framework that deals with effects of compounds with varying concentrations and with mixtures of chemicals. For the one-compartment model and its extensions, as well as for the standard DEB model for individual organisms, theory is available for the co-variation of parameter values among different applications, which facilitates model applications and extrapolations.


Dynamic energy budgets Effects on processes Kinetics Metabolism Transformation 



This research has been supported financially by the European Union (European Commission, FP6 Contract No. 003956 and No 511237-GOCE).


  1. 1.
    Kooijman SALM (2000) Dynamic energy and mass budgets in biological systems. Cambridge University Press, New YorkCrossRefGoogle Scholar
  2. 2.
    Kooijman SALM (2001) Quantitative aspects of metabolic organization; A discussion of concepts. Phil Trans R Soc B 356:331–349CrossRefGoogle Scholar
  3. 3.
    Kooijman SALM (1997) Process-oriented descriptions of toxic effects. In: Schüürmann G, Markert B (eds) Ecotoxicology, pp. 483–519. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  4. 4.
    Kooijman SALM, Andersen T, Kooi BW (2004) Dynamic energy budget representations of stoichiometric constraints to population models. Ecol 85:1230–1243CrossRefGoogle Scholar
  5. 5.
    Kooijman SALM, Grasman J, Kooi BW (2007) A new class of non-linear stochastic population models with mass conservation. Math Biosci 210:378–394CrossRefGoogle Scholar
  6. 6.
    Kooi BW, Kelpin FDL (2003) Structured population dynamics, a modeling perspective. Comm theor Biol 8:125–168CrossRefGoogle Scholar
  7. 7.
    Kooijman SALM, Kooi BW, Hallam TG (1999) The application of mass and energy conservation laws in physiologically structured population models of heterotrophic organisms. J theor Biol 197:371–392CrossRefGoogle Scholar
  8. 8.
    Nisbet RM, Muller EB, Brooks AJ, Hosseini P (1997). Models relating individual and population response to contaminants. Environ Mod Assess 2:7–12CrossRefGoogle Scholar
  9. 9.
    Sousa T, Domingos T, Kooijman SALM (2008) From empirical patterns to theory: A formal metabolic theory of life. Phil Trans R Soc B 363:2453–2464CrossRefGoogle Scholar
  10. 10.
    Kooijman SALM, Troost TA (2007) Quantitative steps in the evolution of metabolic organisation as specified by the dynamic energy budget theory. Biol Rev 82:1–30CrossRefGoogle Scholar
  11. 11.
    Leeuwen IMM van, Kelpin FDL, Kooijman SALM (2002) A mathematical model that accounts for the effects of caloric restriction on body weight and longevity. Biogerontol 3:373–381CrossRefGoogle Scholar
  12. 12.
    Leeuwen IMM van, Zonneveld C, Kooijman SALM (2003) The embedded tumor: Host physiology is important for the interpretation of tumor growth. Brit J Cancer 89:2254–2263CrossRefGoogle Scholar
  13. 13.
    Brack W, Bakker J, Deerenberg C, Deckere E de, Gils J van, Hein M, Jurajda P, Kooijman S, Lamoree M, Lek S, López de Alda MJ, Marcomini A, Muñoz I, Rattei S, Segner H, Thomas K, Ohe P van der, Westrich B, Zwart D de, Schmitt-Jansen M (2005) Models for assessing and forecasting the impact of environmental key pollutants on freshwater and marine ecosystems and biodiversity. Environ Sci Pollut Res 12:252–256CrossRefGoogle Scholar
  14. 14.
    Barber MC (2003) A review and comparison of models for predicting dynamic chemical bioconcentration in fish. Environ Toxicol Chem 22(9):1963–1992CrossRefGoogle Scholar
  15. 15.
    Mackay D, Fraser A (2000) Bioaccumulation of persistent organic chemicals: mechanisms and models. Environ Pollut 110:375–391CrossRefGoogle Scholar
  16. 16.
    Kooijman SALM, Jager T, Kooi BW (2004) The relationship between elimination rates and partition coefficients of chemical compounds. Chemosphere 57:745–753CrossRefGoogle Scholar
  17. 17.
    Janssen MPM, Bergema WF (1991) The effect of temperature on cadmium kinetics and oxygen consumption in soil arthropods. Environ Toxicol Chem 10:1493–1501CrossRefGoogle Scholar
  18. 18.
    Godfrey K (1983) Compartmental models and their application. Academic Press, LondonGoogle Scholar
  19. 19.
    Jacquez JA (1972) Compartmental analysis in biology and medicine. Elsevier, AmsterdamGoogle Scholar
  20. 20.
    Spurgeon DJ, Hopkin SP (1999) Comparisons of metal accumulation and excretion kinetics in earthworms (Eisenia fetida) exposed to contaminated field and laboratory soils. Appl Soil Ecol 11:227–243CrossRefGoogle Scholar
  21. 21.
    Sheppard SC, Evenden WG, Cronwell TC(1997) Depuration and uptake kinetics of I, Cs, Mn, Zn and Cd by the earthworm (Lumbricus terrestris) in radiotracerspiked litter. Environ Toxicol Chem 16:2106–2112Google Scholar
  22. 22.
    Vijver MG, Vink JPM, Jager T, Wolterbeek HT, Straalen NM van, Gestel CAM van (2005) Elimination and uptake kinetics of Zn and Cd in the earthworm Lumbricus rubellus exposed to contaminated floodplain soil. Soil Biol Biochem 10:1843–1851CrossRefGoogle Scholar
  23. 23.
    Kooijman SALM, Baas J, Bontje D, Broerse M, Jager T, Gestel CAM van, Hattum B van (2007) Scaling relationships based on partition coefficients and body sizes have similarities and interactions. SAR QSAR Environ Res 18:315–330CrossRefGoogle Scholar
  24. 24.
    Kooijman SALM, Haren RJF van (1990) Animal energy budgets affect the kinetics of xenobiotics. Chemosphere 21:681–693CrossRefGoogle Scholar
  25. 25.
    Finch CE (1994) Longevity, senescence, and the genome. University of Chicago Press, ChicagoGoogle Scholar
  26. 26.
    Haren RJF van, Schepers HE, Kooijman SALM (1994) Dynamic energy budgets affect kinetics of xenobiotics in the marine mussel Mytilus edulis. Chemosphere 29:163–189CrossRefGoogle Scholar
  27. 27.
    Molen GW van der, Kooijman SALM, Wittsiepe J, Schrey P, Flesch-Janys D, Slob W (2000) Estimation of dioxin and furan elimination rates from cross-sectional data using a pharmacokinetic model. J Exp Anal Environ Epidemiol 10:579–585CrossRefGoogle Scholar
  28. 28.
    Peters RH (1983) The ecological implications of body size. Cambridge University Press, CambridgeGoogle Scholar
  29. 29.
    Wagner JG (1958) The kinetics of alcohol elimination in man. Acta Pharmacol Toxicol 14: 265–289Google Scholar
  30. 30.
    Tielens AGM (1982) The energy metabolism of the juvenile liver fluke, Fasciola hepatica, during its development in the vertebrate host. PhD thesis, Utrecht University, The NetherlandsGoogle Scholar
  31. 31.
    Jager T, Heugens EHW, Kooijman SALM (2006) Making sense of ecotoxicological test results: towards process-based models. Ecotoxicol 15:305–314CrossRefGoogle Scholar
  32. 32.
    Jager T, Crommentuijn T, Gestel CAM van, Kooijman SALM (2004) Simultaneous modelling of multiple endpoints in life-cycle toxicity tests. Environ Sci Technol 38:2894–2900CrossRefGoogle Scholar
  33. 33.
    Péry ARR, Flammarion P, Vollat B, Bedaux JJM, Kooijman SALM, Garric J (2002) Using a biology-based model (debtox) to analyse bioassays in ecotoxicology: Opportunities and recommendations. Environ Toxicol Chem 21:459–465CrossRefGoogle Scholar
  34. 34.
    Kooijman SALM, Bedaux JJM (1996) Analysis of toxicity tests on Daphnia survival and reproduction. Water Res 30:1711–1723CrossRefGoogle Scholar
  35. 35.
    Kooijman SALM, Bedaux JJM (1996) Analysis of toxicity tests on fish growth. Water Res 30:1633–1644CrossRefGoogle Scholar
  36. 36.
    Leeuwen IMM van, Zonneveld C (2001) From exposure to effect: A comparison of modeling approaches to chemical carcinogenesis. Mut Res 489:17–45Google Scholar
  37. 37.
    Péry ARR, Bedaux JJM, Zonneveld C, Kooijman SALM (2001) Analysis of bioassays with time-varying concentrations. Water Res 35:3825–3832CrossRefGoogle Scholar
  38. 38.
    Alda Alvarez O, Jager T, Nunez Colao B, Kammenga JE (2006) Temporal dynamics of effect concentrations. Environ Sci Technol pages 2478–2484Google Scholar
  39. 39.
    Klepper O, Bedaux JJM (1997) A robust method for nonlinear parameter estimation illustrated on a toxicological model. Nonlin Anal 30:1677–1686CrossRefGoogle Scholar
  40. 40.
    Klepper O, Bedaux JJM (1997) Nonlinear parameter estimation for toxicological threshold models. Ecol Modell 102:315–324CrossRefGoogle Scholar
  41. 41.
    Pieters BJ, Jager T, Kraak MHS, Admiraal W (2006) Modeling responses of Daphnia magna to pesticide pulse exposure under varying food conditions: Intrinsic versus apparent sensitivity. Ecotoxicol 15:601–608CrossRefGoogle Scholar
  42. 42.
    Brandt BW, Kelpin FDL, Leeuwen IMM van, Kooijman SALM (2004) Modelling microbial adaptation to changing availability of substrates. Water Res 38:1003–1013CrossRefGoogle Scholar
  43. 43.
    Brandt BW, Leeuwen IMM van, Kooijman SALM (2003) A general model for multiple substrate biodegradation. Application to co-metabolism of non structurally analogous compounds. Water Res 37:4843–4854Google Scholar
  44. 44.
    Brandt BW, Kooijman SALM (2000) Two parameters account for the flocculated growth of microbes in biodegradation assays. Biotech Bioeng 70:677–684CrossRefGoogle Scholar
  45. 45.
    Jager T, Kooijman SALM (2005) Modeling receptor kinetics in the analysis of survival data for organophosphorus pesticides. Environ Sci Technol 39:8307–8314CrossRefGoogle Scholar
  46. 46.
    Muller EB, Nisbet RM (1997) Modeling the effect of toxicants on the parameters of dynamic energy budget models. In: Dwyer FJ, Doane TR, Hinman ML (eds) Environmental Toxicology and Risk Assessment: Modeling and Risk Assessment, Vol 6. American Society for Testing and Materials, Philadelphia, PAGoogle Scholar
  47. 47.
    Baas J, Houte BPP van, Gestel CAM van, Kooijman SALM (2007) Modelling the effects of binary mixtures on survival in time. Environ Toxicol Chem 26:1320–1327CrossRefGoogle Scholar
  48. 48.
    Andersen JS, Bedaux JJM, Kooijman SALM, Holst H (2000) The influence of design parameters on statistical inference in non-linear estimation; a simulation study based on survival data and hazard modelling. J Agri Biol Environ Stat 5:323–341CrossRefGoogle Scholar
  49. 49.
    Baas J, Jager T, Kooijman SALM (2009) Estimation of no effect concentrations from exposure experiments when values scatter among individuals. Ecol Model 220:411–418CrossRefGoogle Scholar
  50. 50.
    Kooijman SALM, Bedaux JJM (1996) Some statistical properties of estimates of no-effects concentrations. Water Res 30:1724–1728CrossRefGoogle Scholar
  51. 51.
    Kooijman SALM (2009) What the egg can tell about its hen: embryo development on the basis of dynamic energy budgets. J Math Biol 58:377–394CrossRefGoogle Scholar
  52. 52.
    Kooijman SALM (1986) Energy budgets can explain body size relations. J theor Biol 121: 269–282CrossRefGoogle Scholar
  53. 53.
    Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353Google Scholar
  54. 54.
    Lika K, Kooijman SALM (2003) Life history implications of allocation to growth versus reproduction in dynamic energy budgets. Bull Math Biol 65:809–834CrossRefGoogle Scholar
  55. 55.
    Kooijman SALM (1985) Toxicity at population level. In: Cairns J (ed) Multispecies toxicity testing, pp. 143–164. Pergamon Press, New YorkGoogle Scholar
  56. 56.
    Alda Alvarez O, Jager T, Kooijman SALM, Kammenga J (2005) Responses to stress of Caenorhabditis elegans populations with different reproductive strategies. Func Ecol 19: 656–664CrossRefGoogle Scholar
  57. 57.
    Kooijman SALM (1988) Strategies in ecotoxicological research. Environ Aspects Appl Biol 17(1):11–17Google Scholar
  58. 58.
    Kooi BW, Bontje D, Voorn GAK van, Kooijman SALM (2008) Sublethal contaminants effects in a simple aquatic food chain. Ecol Modell 112:304–318CrossRefGoogle Scholar
  59. 59.
    Kooijman SALM, Hanstveit AO, Nyholm N (1996) No-effect concentrations in alga growth inhibition tests. Water Res 30:1625–1632CrossRefGoogle Scholar
  60. 60.
    Kooijman SALM, Sousa T, Pecquerie L, Meer J van der, Jager T (2008) From food-dependent statistics to metabolic parameters, a practical guide to the use of dynamic energy budget theory. Biol Rev 83:533–552CrossRefGoogle Scholar
  61. 61.
    Kooijman SALM, Bedaux JJM, Slob W (1996) No-effect concentration as a basis for ecological risk assessment. Risk Anal 16:445–447CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sebastiaan A. L. M. Kooijman
    • 1
  • Jan Baas
    • 1
  • Daniel Bontje
    • 1
  • Mieke Broerse
    • 1
  • Cees A. M. van Gestel
    • 1
  • Tjalling Jager
    • 1
  1. 1.Faculty Earth and Life SciencesVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations