Skip to main content

Biotechnology of the Rhizosphere

  • Chapter
  • First Online:
Recent Advances in Plant Biotechnology

Abstract

This chapter deals with the management of the rhizosphere as a living system, paying special attention to one of the three partners that define the rhizosphere: beneficial microorganisms (termed PGPR or the plant growth-promoting rhizosphere bacteria) that inhabit it. After that, several biotechnological approaches for management of the rhizosphere will be presented. These approaches relate to environment friendly agricultural practices, the production of high-quality foods with bioactive compounds (phytonutrients), and applications in the pharmaceutical industry.

The rhizosphere refers to the soil region that is subject to the influence of plant roots and their associated microorganisms. Among these microorganisms are plant growth-promoting rhizobacteria which are beneficial for plant health in many ways: by improving plant nutrition, protecting against other microorganisms, producing plant growth regulators, or enhancing plant secondary metabolic pathways that are directly related to a plant’s defense. In some plant species, these secondary metabolites are useful to human health.

The biotechnology of the rhizosphere covers a wide array of applications that deal with sustainable agriculture (intensive or extensive): lowering of chemical inputs due to fertilizers and pesticides; improving crop productivity in saline and non-fertile soils; improvement of plant fitness for reforestation of degraded soils; and improvement in the bioactive levels of metabolites in medicinal plant species, among others. In this connection, the identification of elicitors (molecules that stimulate any of a number of defense responses in plants) appears to be an alternative to PGPR for unraveling limiting steps of secondary metabolism pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles, F.B., Morgan, P.W., Saltveit, M.E. Jr. 1992. Ethylene in plant biology, 2nd ed. Academic Press, New York.

    Google Scholar 

  • Ahmad, I., Farrukh, A., Ahmad, F., Zahin, M., Musarrat, J. 2008. Quorum sensing in bacteria. Potential in plant health protection. In: Plant–bacteria interactions: strategies and techniques to promote plant growth. I. Ahmad, J. Pichtel, S. Hayat (eds.). Wiley-VCH, Weinheim.

    Google Scholar 

  • Arkhipova, T.N., Prinsen, E., Veselov, S.U., Martinenko, E.V., Melentiev, A.I., Kudoyarova, G.R. 2007. Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292: 305–315.

    Article  CAS  Google Scholar 

  • Arshad, M., Frankenberger, W.T., 1998. Plant growth-regulating substances in the rhizosphere: microbial production and functions. Adv. Agron. 66: 45–151.

    Google Scholar 

  • Atzorn, R., Crozier, A., Wheeler, C.T., Sandberg, G. 1988. Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175: 532–538.

    Article  CAS  Google Scholar 

  • Baldini, Y.J. 1997. Recent advances in BFN with non-legume plants. Soil Biol. Biotechnol. 29(5): 911–922.

    Article  Google Scholar 

  • Bar, T., Okon, Y. 1992. Induction of indole-3-acetic acid synthesis and possible toxicity of tryptophan in Azospirillum brasilense Sp7. Symbiosis 13: 191–198.

    CAS  Google Scholar 

  • Barriuso Maicas, J., Pereyra de la Iglesia, M.T., Lucas García, J.A., Megías, M., Gutierrez Mañero, F.J., Ramos Solano, B. 2005. Screening for PGPR to improve establishment of the symbiosis Lactarius deliciosus-Pinus sp. 1 50: 82–89.

    Google Scholar 

  • Barriuso, J., Ramos Solano, B., Lucas García, J.A., Probanza Lobo, A., Garcia-Villaraco, A., Gutiérrez Mañero, F.J. 2008a. Ecology, genetic diversity and screening strategies of PGPR. In: Plant–bacteria interaction: concepts and technologies for promoting plant growth. I. Ahmad (India), J. Pichtel (USA), S. Hayat (India) (eds.). Wiley VCH Publisher, Weinheim.

    Google Scholar 

  • Barriuso Maicas, J., Ramos Solano, B.J., Gutierrez Mañero, F.J. 2008b. Protection against pathogen and salt stress by four PGPR isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 98: 666–672.

    Google Scholar 

  • Barriuso, J., Ramos Solano, B., Santamaría, C., Daza, A., Gutiérrez Mañero, F.J. 2008c. Effect of inoculation with putative PGPR isolated from pinus sp on Pinus pinea growth, mycorrhization and rhizosphere microbial communities. J. Appl. Microbiol. 105: 1298–1309.

    Google Scholar 

  • Barriuso, J., Ramos Solano, B., Fray, R.G., Cámara, M., Hartmann, A., Gutiérrez Mañero, F.J. 2008d. Transgenic tomato plants alter quorum sensing in plant growth promoting rhizobacteria. Plant Biotechnol. J. 6: 442–452.

    Google Scholar 

  • Bashan, Y., Levanony, H. 1990. Current status of Azospirillum as a challenge for agriculture. Can. J. Microbiol. 36: 591–608.

    Article  CAS  Google Scholar 

  • Bent, E., Tzun, S., Chanway, C.P., Eneback, S. 2001. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can. J. Microbiol. 47: 793–800.

    Article  PubMed  CAS  Google Scholar 

  • Bloomberg, G.V., Lugtenberg, B.J.J. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4: 343–350.

    Article  Google Scholar 

  • Compant, S., Duffy, B., Nowak, J., Clement, C., Ait Barka, E. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 4951–4959.

    Google Scholar 

  • Conrath, U., Pieterse, C.M.J., Mauch-Mani, B. 2002. Priming in plant–pathogen interactions. Trends Plant Sci. 7: 210–216.

    Article  PubMed  CAS  Google Scholar 

  • de Salomone, I.E.G., Hynes, R.K., Nelson, L.M. 2001. Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can. J. Microbiol. 47: 404–411.

    Article  Google Scholar 

  • Doménech, J., Reddy, M.S., Kloepper, J.W., Ramos, B., Gutierrez-Mañero, F.J. 2006. Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. Biocontrol 51: 245–258.

    Article  Google Scholar 

  • Duponnois, R., Plenchette, C. 2003. A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 13(2): 85–91.

    Article  PubMed  CAS  Google Scholar 

  • Founoune, H., Duponnois, R., Meyer, J.M., Thioulouse, J., Masse, D., Chotte, J.L., Neyra, M. 2002. Interaction between ectomycorrhizal symbiosis and fluorescent pseudomonads on Acacia holosericea: isolation of micorrhiza helper bacteria (MHB) from a Soudano-Sahelian soil. FEMS Microbiol. Ecol. 1370: 1–10.

    Google Scholar 

  • Fray, R.G. 2002. Altering plant–microbe interaction through artificially manipulating bacterial quorum sensing. Ann. Bot. 89: 245–253.

    Article  PubMed  CAS  Google Scholar 

  • Fuqua, W.C., Winans, S.C. 1994. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol. 176: 2796–2806.

    PubMed  CAS  Google Scholar 

  • Garbaye, J. 1994. Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phyto. 128: 197–210.

    Article  Google Scholar 

  • Glick, B.R. 1995. The enhancement of plant-growth by free-living bacteria. Can. J. Microbiol. 41(2): 109–117.

    Article  CAS  Google Scholar 

  • Glick, B.R., Jacobson, C.B., Schwarze, M.M.K., Pasternak, J.J. 1994a. 1-Aminocyclopropae-1-carboxylic acid deaminase play a role on plant growth by Pseudomonas putida GR12-2. In: Improving plant productivity with rhizosphere bacteria. M.H. Ryder, P.M. Stephens, G.D. Bowen (eds.), vol. 1. CSIRO, Adelaide, pp. 150–152.

    Google Scholar 

  • Glick, B.R., Jacobson, C.B., Schwarze, M.M.K., Pasternak, J.J. 1994b. 1-Aminocyclopropae-1-carboxylic acid deaminase mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can. J. Microbiol. 40: 911–915.

    Article  CAS  Google Scholar 

  • Glick, B.R., Penrose, D.M., Li, J. 1998. A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J. Theor. Biol. 190: 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, J.E., Keshavan, N.D. 2006. Messing with bacterial quorum sensing. Microbiol. Mol. Biol. Rev. 70: 859–875.

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez Mañero, F.J., Acero, N., Lucas, J.A., Probanza, A. 1996. The influence of native rhizobacteria on European alder [ Alnus glutinosa (L.) Gaertn.] growth. II. Characterization of growth promoting and growth inhibiting strains. Plant Soil 182: 67–74.

    Article  Google Scholar 

  • Gutiérrez Mañero, F.J., Ramos, B., Probanza, A., Mehouachi, J., Tadeo, F.R., Talón, M. 2001. The plant-growth-promoting rhizobacteria B. pumillusand B. licheniformis CECT 5106 produce high amounts of physiologically active gibberellins. Physiol. Plantarum. 111: 206–211.

    Article  Google Scholar 

  • Gutiérrez Mañero, F.J., Ramos, B., Lucas García, J.A., Probanza, A., Barrientos, M.L. 2003. Systemic induction of the biosynthesis of terpenic compunds in D. lanata. J. Plant Physiol. 160: 105–113.

    Article  PubMed  Google Scholar 

  • Gyaneshwar, P., Kumar, G.N., Parekh, L.J., Poole, P.S. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245(1): 83–93.

    Article  CAS  Google Scholar 

  • Henne, A., Daniel, R., Schmitz, R.A., Gottschalk, G. 1999. Construction of environmental DNA libraries in Escherichia coliand screening for the presence of genes conferring utilization of 4-hydroxybutyrate. Appl. Environ. Microbiol. 65: 3901–3907.

    PubMed  CAS  Google Scholar 

  • Katsy, E. 1997. Participaton of auxins in regulation of bacterial and plant gene expression. Russ. J. Genet. 33: 301–306.

    Google Scholar 

  • Kloepper, J.W., Schroth, M.N., Miller, T.D. 1980a. Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70: 1078–1082.

    Article  Google Scholar 

  • Kloepper, J.W., Leong, J., Teintze, M., Schroth, M.N., 1980b. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885–886.

    Article  CAS  Google Scholar 

  • Lawton, K.A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Lim, H.S., Kim, Y.S., Kim, S.D. 1991. Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl. Environ. Microbiol. 57: 510–516.

    Google Scholar 

  • Lim, H.-S., Kim, Y.-S. and Kim, S.-D. 1991. Pseudomonas stutzeri YPL-1 genetic transformation and anti-fungal mechanism against Fusarium solani, an agent of plant root rot. Appl. Environ. Microbiol. 57: 510–516.

    Google Scholar 

  • Liu, L., Kloepper, J.W., Tuzun, S. 1995. Induction of systematic resistance in cucumber by plant growth promoting rhizobacteria: duration of protection and effect of host resistance on protection and root colonization. Phytopathology 85: 1064–1068.

    Article  Google Scholar 

  • Lucas García, J., Probanza, A., Ramos, B., Gutierrez Mañero, F.J. 2001. Genetic variability of rhizobacteria from wild populations of four Lupinus species based on PCR-RAPDs. J. Plant. Nutr. Soil Sci. 164: 1–7.

    Article  Google Scholar 

  • Lucas García, J.A., Probanza, A., Ramos, B., Ruiz Palomino, M., Gutiérrez Mañero, F.J. 2004. Effects of inoculation with a plant growth promoting rhizobacterium of Bacillus generus (Bacillus licheniformis) on the growth, fruit production and induction of systemic resistance of different pepper and tomato varieties. Agronomy 24: 69–76.

    Google Scholar 

  • Lynch, J.M. 1990. The rhizosphere. J.M. Lynch (ed.). John Wiley and Sons, Chichester, p. 458.

    Google Scholar 

  • Marek-Kozackuk, M., Skorupska, A. 2001. Production of B-group vitamins by plant growth-promoting Pseudomonas fluorescen strain 267 and the importance of vitamins in the colonization and nodulation of red clover. Biol. Fertil. Soils 33: 146–151.

    Article  Google Scholar 

  • Marilley, L., Aragno, M. 1999. Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl. Soil Ecol. 13: 127–136.

    Article  Google Scholar 

  • Morgan, P.W., Drew, C.D. 1997. Ethylene and plant responses to stress. Physiol. Plantarum. 100: 620–630.

    Article  CAS  Google Scholar 

  • Poulev, A., O’Neal, J.M., Logendra, S., Pouleva, R.B., Timeva, V., Garvey, A.S., Gleba, D., Jenkings, I.S., Halpern, B.T., Kneer, R., Gragg, G.M., Raskin, I. 2003. Elicitation, a new window into plant chemodiversity and phytochemical drug discovery. J. Med. Chem. 46: 2542–2547.

    Article  PubMed  CAS  Google Scholar 

  • Radman, R., Saez, T., Bucke, C., Keshavarz, T. 2003. Elicitation of plants and microbial cell systems. Biotechnol. Appl. Biochem. 37: 91–102.

    Article  PubMed  CAS  Google Scholar 

  • Rainey, P.B. 1999. Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ. Microbiol. 1: 243–257.

    Article  PubMed  CAS  Google Scholar 

  • Ramos, B., Lucas García, J.A., Probanza, A., Domenech, J., Gutiérrez Mañero, F.J. 2003. Influence of an indigenous European alder (Alnus glutinosa L. Gaertn) rhizobacterium (Bacillus pumilus) on the growth of alder and its rhizosphere microbial community structure in two soils. New Forests 25: 149–159.

    Article  Google Scholar 

  • Ramos Solano, B., Pereyra de la Iglesia, M.T., Probanza, A., Lucas García, J.A., Megías, M., Gutierrez Mañero, F.J. 2007. Screening for PGPR to improve growth of Cistus ladanifer seedlings for reforestation of degraded mediterranean ecosystems. Plant Soil 289: 59–68.

    Google Scholar 

  • Ramos Solano, B., Barriuso Maicas, J., Gutiérrez Mañero, F.J. 2008a. Physiological and molecular mechanisms of PGPRs. In: Plant–bacteria interaction: concepts and technologies for promoting plant growth. I. Ahmad (India), Prof. J. Pichtel (USA), Dr S. Hayat (India) (eds.). Wiley VCH Publisher, Weinheim.

    Google Scholar 

  • Ramos Solano, B., Barriuso Maicas, J., Pereyra De La Iglesia, M.T., Domenech, J., Gutierrez Mañero, F.J. 2008b. Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection and biotic elicitors. Phytopathology 98: 451–457.

    Article  PubMed  CAS  Google Scholar 

  • Riesenfeld, C.S., Goodman, R.M., Handelsman, J. 2004. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ. Microbiol. 6: 981–989.

    Article  PubMed  CAS  Google Scholar 

  • Rolf, D. 2005. The metagenomics of soil. Nat. Rev. Microbiol. 3: 470–478.

    Article  Google Scholar 

  • Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H., Hunt, M.D. 1996. Systemic acquired resistance. Plant Cell 8: 1809–1819.

    Article  PubMed  CAS  Google Scholar 

  • Salisbury, F.B. 1994. The role of plant hormones. In: Plant–environment interactions. R.E. Wilkinson (ed.). Marcel Dekker, New York, pp. 39–81.

    Google Scholar 

  • Teplistsky, M., Robinson, J.B., Wolfang, D.B. 2000. Plants secrete substances that mimis bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviours in associated bacteria. Am. Phytopathol. Soc. 13: 637–648.

    Google Scholar 

  • Timmusk, S., Nicander, B., Granhall, U., Tillberg, E. 1999. Cytokinin production by Paenibacillus polymyxa. Soil Biol. Biochem. 31: 1847–1852.

    Article  CAS  Google Scholar 

  • Toyoda, H., Utsumi, R. 1991. Method for the prevention of Fusarium diseases and microorganisms used for the same. US patent No. 4. 988–586.

    Google Scholar 

  • Uknes, S., Winter, A.M., Delaney, T.P., Vy, B., Morse, A., Friedrich, L., Nye, G., Potter, S., Ward, E., Ryals, J. 1993. Biological induction of systemic acquired resistance in Arabidopsis. Mol. Plant Microbe. Interact. 6: 692–698.

    Article  Google Scholar 

  • Van Hulten, M., Pelser, M., van Loon, L.C., Pieterse, C.M.J., Ton, J. 2006. Costs and benefits of priming for defense in Arabidopsis. PNAS 103: 5602–5607.

    Article  PubMed  Google Scholar 

  • Van Loon, L.C., Bakker, P.A.H.M., Pieterse, C.M.J. 1998. Systemic resistance induced by rhizosphere bacteria. Ann. Rev. Phytopathol. 36: 453–483.

    Article  Google Scholar 

  • Van Peer, R., Niemann, G.J., Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 91: 728–734.

    Article  Google Scholar 

  • van Wees, S.C.M., de Swart, E.A.M., van Pelt, J.A., van Loon, L.C., Pieterse, C.M.J. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defence pathways in Arabidopsis thaliana. PNAS 97: 8711–8716.

    Article  PubMed  Google Scholar 

  • Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571–586.

    Article  CAS  Google Scholar 

  • Voisard, C., Keel, C., Haas, D., Defago, G. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 8: 351–358.

    PubMed  CAS  Google Scholar 

  • Wang, G.Y., Graziani, E., Waters, B., Pan, W., Li, X., McDermott, J., Meurer, G., Saxena, G., Andersen, R.J., Davies, J. 2000. Novel natural products from soil DNA libraries in a streptomycete host. Org. Lett. 2: 2401–2404.

    Article  PubMed  CAS  Google Scholar 

  • Wei, G., Kloepper, J.W., Tuzun, S. 1991. Induction of systemic resistance of cucumber to Colletrotichum orbiculare by select strains of plant-growth promoting rhizobacteria. Phytopathology 81: 1508–1512.

    Article  Google Scholar 

  • Whitehead, N.A., Barnard, A.M.L., Slater, H., Simpson, N.J.L., Salmond, G.P.C. 2001. Quorum-sensing in gram-negative bacteria. FEMS Microbiol. Rev. 25: 65–404.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge all students that have participated in these studies that are cited in this chapter and also University San Pablo CEU, Ministerio de Ciencia y Tecnologia, Comunidad Autónoma de Madrid, and the EU for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Ramos Solano .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Solano, B.R., Maicas, J.B., Mañero, J.G. (2009). Biotechnology of the Rhizosphere. In: Recent Advances in Plant Biotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0194-1_8

Download citation

Publish with us

Policies and ethics