Skip to main content

The Use of Plant Cell Biotechnology for the Production of Phytochemicals

  • Chapter
  • First Online:
Recent Advances in Plant Biotechnology

Abstract

In this chapter, we bring together up-to-date information concerning plant cell biotechnology and its applications. Because plants contain many valuable secondary metabolites that are useful as drug sources (pharmaceuticals), natural fungicides and insecticides (agrochemicals), natural food flavorings and coloring agents (nutrition), and natural fragrances and oils (cosmetics), the production of these phytochemicals through plant cell factories is an alternative and concurrent approach to chemical synthesis. It also provides an alternative to extraction of these metabolites from overcollected plant species. While plant cell cultures provide a viable system for the production of these compounds in laboratories, its application in industry is still limited due to frequently low yields of the metabolites of interest or the feasibility of the bioprocess. A number of factors may contribute to the efficiency of plant cells to produce desired compounds. Genetic stability of cell lines, optimization of culture condition, tissue-diverse vs. tissue-specific site-specific localization and biosynthesis of metabolites, organelle targeting, and inducible vs. constitutive expression of specific genes should all be taken into consideration when designing a plant-based production system. The major aims for engineering secondary metabolism in plant cells are to increase the content of desired secondary compounds, to lower the levels of undesirable compounds, and to introduce novel compound production into specific plants. Recent achievements have also been made in altering various metabolic pathways by use of specific genes encoding biosynthetic enzymes or genes that encode regulatory proteins. Gene and metabolic engineering approaches are now being used to successfully achieve highest possible levels of value-added natural products in plant cell cultures. Applications through functional genomics and systems biology make plant cell biotechnology much more straightforward and more attractive than through previous, more traditional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apse, M.P., Aharon, G.S., Snedden, W.A., Blumwald, E. 1999. Salt tolerance conferred by overexpression of a vacuolar Na super(+)/H super(+) antiport in Arabidopsis. Science 285: 1256–1258.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, J.E., Sburlati, A., Hatzimanikatis, V., Lee, K.H., Renner, W.A., Tsai, P.S. 1996. Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnology & Bioengineering 52: 109–121.

    Article  CAS  Google Scholar 

  • Bailey, J.E., Sburlati, A., Hatzimanikatis, V., Lee, K., Renner, W.A., Tsai, P.S. 2002. Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnology & Bioengineering 79(5): 568–579.

    Article  CAS  Google Scholar 

  • Basset, G.J.C., Quinlivan, E.P., Gregory III, J.F., Hanson, A.D. 2005. Folate synthesis and metabolism in plants and prospects for biofortification. Crop Science 45: 449–453.

    Article  CAS  Google Scholar 

  • Carrari, F., Urbanczyk-Wochniak, E., Willmitzer, L., Fernie, A.R. 2003. Engineering central metabolism in crop species: learning the system. Metabolic Engineering 5: 191–200.

    Article  PubMed  CAS  Google Scholar 

  • Chartrain, M., Salmon, P.M., Robinson, D.K., Buckland, B.C. 2000. Metabolic engineering and directed evolution for the production of pharmaceuticals. Current Opinion in Biotechnology 11: 209–214.

    Article  PubMed  CAS  Google Scholar 

  • Cseke, L., Kirakosyan, A., Kaufman, P., Warber, S., Duke, J., Brielmann, H. 2006. Natural Products from Plants, 2nd ed. CRC Press/Taylor & Francis Group, Boca Raton, FL, p. 616.

    Google Scholar 

  • DellaPenna, D. 2001. Plant metabolic engineering. Plant Physiology 125: 160–163.

    Article  PubMed  CAS  Google Scholar 

  • Delmer, D.P., Haigler, C.H. 2002. The regulation of metabolic flux to cellulose, a major sink for carbon in plants. Metabolic Engineering 4: 22–28.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, R.A. 2005. Engineering of plant natural product pathways. Current Opinion in Plant Biology 8: 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Dos Santos, R.J., Schripsema, J., Verpoorte, R. 1994. Ajmalicine metabolism in Catharanthus roseus cell cultures. Phytochemistry 35: 677–681.

    Article  CAS  Google Scholar 

  • Gambonnet, B., Jabrin, S., Ravanel, S., Karan, M., Douce, R., Rebeille, F. 2001. Folate distribution during higher plant development. Journal of the Science of Food and Agriculture 81: 835–841.

    Article  CAS  Google Scholar 

  • Giuliano, G., Tavazza, R., Diretto, G., Beyer, P., Taylor, M.A. 2008. Metabolic engineering of carotenoid biosynthesis in plants. Trends in Biotechnology 26: 139–145.

    Article  PubMed  CAS  Google Scholar 

  • Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozak, K. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology 17: 287–291.

    Article  PubMed  CAS  Google Scholar 

  • Kim, B., Gibson, D.M., Shuler, M.L. 2005. Relationship of viability and apoptosis to taxol production in taxus sp. suspension cultures elicited with methyl jasmonate. Biotechnology Progress 21: 700–707.

    Article  PubMed  CAS  Google Scholar 

  • Kleeb, A.C., Edalat, H.M., Gamper, M., Haugstetter, J., Giger, L., Neuenschwander, M., Kast, P., Hilvert, D. 2007. Metabolic engineering of a genetic selection system with tunable stringency. PNAS 104: 13907–13912.

    Article  PubMed  CAS  Google Scholar 

  • Kunze, R., Frommer, W.B., Flügge, U.I. 2002. Metabolic engineering of plants: the role of membrane transport. Metabolic Engineering 4(1): 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Maliga, P., Graham, I. 2004. Molecular farming and metabolic engineering promise a new generation of high-tech crops. Current Opinion in Plant Biology 7: 149–151.

    Article  PubMed  Google Scholar 

  • Morgan, J.A., Shanks, J.V. 2002. Quantification of metabolic flux in plant secondary metabolism by a biogenetic organizational approach. Metabolic Engineering 4: 257–262.

    Article  PubMed  Google Scholar 

  • Ohmiya, A., Kishimoto, S., Aida, R., Yoshioka, S., Sumitomo, K. 2006. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiology 142: 1193–1201.

    Article  PubMed  CAS  Google Scholar 

  • Plackett, R.L., Burman, J.P. 1946. The design of optimum multifactorial experiments. Biometrica 33: 305–325.

    Article  Google Scholar 

  • Roberts, S.C., Shuler, M.L. 1997. Large-scale plant cell culture. Current Opinion in Biotechnology 8: 154–159.

    Article  PubMed  CAS  Google Scholar 

  • Romer, S., Lubeck, J., Kauder, F., Steiger, S., Adomat, C., Sandmann, G. 2002. Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metabolic Engineering 4: 263–272.

    Article  PubMed  CAS  Google Scholar 

  • Rontein, D., Basset, G., Hanson, A.D. 2002. Metabolic engineering of osmoprotectant accumulation in plants. Metabolic Engineering 4: 49–56.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, A., Murata, N. 1998. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and coldis one of the best example in this field. Plant Molecular Biology 38: 1011–1019.

    Article  PubMed  CAS  Google Scholar 

  • Sauer, U., Schlattner, U. 2004. Inverse metabolic engineering with phosphagen kinase systems improves the cellular energy state. Metabolic Engineering 6: 220–228.

    Article  PubMed  CAS  Google Scholar 

  • Verpoorte, R. 1996. Plant cell biotechnological research in the Netherlands. In DiCosmo, F., Misawa, M. (eds.) Plant Cell Culture Secondary Metabolism. CRC Press, Boca Raton, New York, London, Tokyo, p. 660.

    Google Scholar 

  • Verpoorte, R., Alfermann, A.W. 2000. Metabolic Engineering of Plant Secondary Metabolism. Kluwer Academic Publishers Group, The Netherlands, p. 296.

    Google Scholar 

  • Verpoorte, R., Memelink, J. 2002. Engineering secondary metabolite production in plants. Current Opinion in Biotechnology 13: 181–187.

    Article  PubMed  CAS  Google Scholar 

  • Verpoorte, R., van der Heijden, R., Hoge, J.H.C., ten Hoopen, H.J.G. 1994. Plant cell biotechnology for the production of secondary metabolites. Pure and Applied Chemistry 66: 2307–2310.

    Article  CAS  Google Scholar 

  • Verpoorte, R., van der Heijden, R., Memelink, J. 2000. Engineering the plant cell factory for secondary metabolite production. Transgenic Research 9: 323–343.

    Article  PubMed  CAS  Google Scholar 

  • Verpoorte, R., van der Heijden, R., ten Hoopen, H.J.G., Memelink, J. 1999. Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnology Letters 21: 467–479.

    Article  CAS  Google Scholar 

  • Vogel, H.C., Tadaro, C.L. 1997. Fermentation and Biochemical Engineering Handbook – Principles, Process Design, and Equipment, 2nd ed. William Andrew Publishing, Noyes, p. 801.

    Google Scholar 

  • Welsch, R., Maass, D., Voegel, T., DellaPenna, D., Beyer, P. 2007. Transcription factor RAP2.2 and its interacting partner SINAT2: Stable elements in the carotenogenesis of arabidopsis leaves. Plant Physiology 145: 1073–1085.

    Article  PubMed  CAS  Google Scholar 

  • Yu, O., Jez, J.M. 2008. Nature’s assembly line: biosynthesis of simple phenylpropanoids and polyketides. The Plant Journal 54(4): 750–762.

    Article  PubMed  CAS  Google Scholar 

  • Yu, O., Shi, J., Hession, A.O., Maxwell, C.A., McGonigle, B., Odell, J.T. 2003. Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63(7): 753–763.

    Article  PubMed  CAS  Google Scholar 

  • Zenk, M.H., El-Shagi, H., Arens, H., Stockigt, J., Weiler, E.W., Deus, B. 1977. Formation of indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharanthus roseus. In Barz, W., Reinhard, E., Zenk, M.H. (eds.) In Plant Tissue Culture and Its Biotechnological Application. Springer Verlag, Berlin, Germany, pp. 27–43.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ara Kirakosyan .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kirakosyan, A., Cseke, L.J., Kaufman, P.B. (2009). The Use of Plant Cell Biotechnology for the Production of Phytochemicals. In: Recent Advances in Plant Biotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0194-1_2

Download citation

Publish with us

Policies and ethics