Skip to main content

Regulating Phytonutrient Levels in Plants – Toward Modification of Plant Metabolism for Human Health

  • Chapter
  • First Online:
Recent Advances in Plant Biotechnology

Abstract

Plants constitute a major component of our diet, providing pigments and additional phytonutrients that are thought to be essential for maintenance of human health and are therefore also referred to as functional metabolites. Several fruit and vegetable species already contain high levels of several of these ingredients, while others do not. Nevertheless, efforts have been devoted to increasing and diversifying the content of phytonutrients, such as carotenoids, flavonoids, and vitamins, even in plants that normally produce high levels of such nutritional components. These efforts rely on transgenic and non-transgenic approaches which have exposed complex regulation mechanisms required for increasing the levels of functional metabolites in plants. The study of these regulatory mechanisms is essential to expedite improvement of levels of these metabolites in fruits, vegetables, cereals, legumes, and starchy roots or tubers. Such improvement is important for the following reasons: (1) to increase the efficiency of the industrial extraction of these compounds that are later being used as natural food supplements or fortifiers and as a source of natural colors to replace the chemical alternatives; (2) to improve and diversify the diet in populations of developing countries, where malnutrition may occur through lack of variety in the diet; (3) to provide fresh agricultural products such as fruits and vegetables highly enriched with certain phytonutrients to possibly substitute the chemically synthesized food supplements and vitamins; and (4) to provide an array of new and attractive colors to our diet.

Three basic approaches to modifying a biosynthetic pathway to increase amounts of desirable phytonutrients are available: (1) manipulation of pathway flux, including increasing, preventing, or redirecting flux into or within the pathway; (2) introduction of novel biosynthetic activities from other organisms via genetic engineering; and (3) manipulation of metabolic sink to efficiently sequester the end-products of particular metabolic pathways. These approaches have been effectively demonstrated in relation to the flavonoid and carotenoid biosynthetic pathways in tomato (Solanum lycopersicum). This chapter is therefore focused on carotenoids and flavonoids, their importance to human nutrition, and approaches used to induce, regulate, and diversify their content in tomato fruits. In addition, several examples of outstanding approaches employed to modulate carotenoid content in other plant species will also be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bando, N., Wakamatsu, S., Terao, J. 2007. Effect of an excessive intake of quercetin on the vitamin E level and antioxidative enzyme activities of mouse liver under paraquat-induced oxidative stress. Biosci. Biotechnol. Biochem. 71: 2569–2572.

    PubMed  CAS  Google Scholar 

  • Bernhardt, A., Lechner, E., Hano, P., Schade, V., Dieterle, M., Anders, M., Dubin, M.D., Benvenuto, G., Bowler, C., Genschik, P., Hellmann, H. 2006. CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thaliana. Plant J. 47: 591–603.

    PubMed  CAS  Google Scholar 

  • Beyer, P. 1989. Carotene biosynthesis in daffodil chromoplasts: on the membrane integral desaturation and cyclization reactions. In: Boyer, C.D., Shannon, J.C., Hardison, R.C. (Eds.). Physiology, Biochemistry, and Genetics of Nongreen Plastids. Rockville, MD: Am. Soc. of Plant Physiologists. pp. 157–170.

    Google Scholar 

  • Beyer, P., Kroncke, U., Nievelstein, V. 1991. On the mechanism of the lycopene isomerase cyclase reaction in Narcissus pseudonarcissus L. chromoplasts. J. Biol. Chem. 266: 17072–17078

    PubMed  CAS  Google Scholar 

  • Beyer, P., Al-Babili, S., Ye, X., Lucca, P., Schaub, P., Welsch, R., Potrykus, I. 2002. Golden Rice: introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J. Nutr. 132: 506S–510S.

    PubMed  Google Scholar 

  • Bino, R.J., de Vos, C.H.R, Lieberman, M., Hall, R.D., Bovy, A., Jonker, H.H., Tikunov, Y., Lommen, A., Moco, S., Levin, I. 2005. The light-hyperresponsive high pigment-2 dg mutation of tomato: alterations in the fruit metabolome. New Phytol. 166: 427–438.

    PubMed  CAS  Google Scholar 

  • Bovy, A., de Vos, R., Kemper, M., Schijlen, E., Almenar Pertejo, M., Muir, S., Collins, G., Robinson, S., Verhoeyen, M., Hughes, S., Santos-Buelga, C., van Tunen, A. 2002. High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14: 2509–2526.

    PubMed  CAS  Google Scholar 

  • Bohm, B. 1998. Introduction of flavonoids. Harwood Academic Publishers, Singapore.

    Google Scholar 

  • Britton, G. 1995. Structure and properties of carotenoids in relation to function. FASEB J. 9: 1551–1558.

    PubMed  CAS  Google Scholar 

  • Britton, G. 1998. Overview of carotenoid biosynthesis. In: Britton, G., Liaaen Jensen, S., Pfander, H. (Eds.). Carotenoids. Birkhauser, Basel, Switzerland pp. 13147.

    Google Scholar 

  • Brouillard, R., Dangles O. 1994. Flavonoids and flower colour. In: Harborne, J.B. (Ed). The Flavonoids: Advances in Research since 1986. Chapman and Hall, London, pp. 565–588.

    Google Scholar 

  • Brouillard, R., Figueiredo, P., Elhabiri, M., Dangles, O. 1997. Molecular interactions of phenolic compounds in relation to the colour of fruit and vegetables. In: Thomas-Barberan, F. (Ed). Phytochemistry of Fruits and Vegetables. Oxford University Press, New York, USA. pp. 29–49.

    Google Scholar 

  • Carol, P., Stevenson, D., Bisanz, C., Breitenbach, J., Sandmann, G., Mache, R., Coupland, G., Kuntz, M. 1999. Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell 11: 5768.

    PubMed  CAS  Google Scholar 

  • Chen, H., Shen, Y., Tang, X., Yu, Y., Wang, J., Guo, L., Zhang, Y., Zhang, H., Feng, S., Strickland, E., Zheng, N., Deng, X.W. 2006. Arabidopsis CULLIN4 forms an E3 ubiquitin ligase with RBX1 and the CDD complex in mediating light control of development. Plant Cell 18: 1991–2004.

    PubMed  CAS  Google Scholar 

  • Chew, B.P., Park, J.S. 2004. Carotenoid action on the immune response. J. Nutr. 134: 257S–261S.

    PubMed  CAS  Google Scholar 

  • Choi, S.U., Ryu, S.Y., Yoon, S.K., Jung, N.P., Park, S.H., Kim, K.H., Choi, E.J., Lee, C.O. 1999. Effects of flavonoids on the growth and cell cycle of cancer cells. Anticancer Res. 19: 52295233.

    PubMed  CAS  Google Scholar 

  • Chory, J. 1993. Out of darkness: mutants reveal pathways controlling light-regulated development in plants. Trends Genet. 9: 167–172.

    PubMed  CAS  Google Scholar 

  • Connolly, J.D., Hill, R.A. 1992. Dictionary of Terpenoids. Chapman and Hall, New York, USA.

    Google Scholar 

  • Cook, N.C., Samman, S. 1996. Flavonoids: chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 7: 6676.

    CAS  Google Scholar 

  • Corder, R., Mullen, W., Khan, N.Q., Marks, S.C., Wood, E.G., Carrier, M.J., Crozier A. 2006. Oenology: red wine procyanidins and vascular health. Nature 444: 566.

    PubMed  CAS  Google Scholar 

  • Cseke, L.J., Kirakosyan, A., Kaufman, P.B, Warber, S., Duke, J.A., Brielmann, H.L. 2006. Natural products from plants. Second Edition, CRC Press/Taylor & Francis Group: Boca Raton, FL

    Google Scholar 

  • Cunningham, F., Schiff, J. 1985. Photoisomerization of delta-carotene stereoisomers in cells of Euglena gracillis mutant W3BUL and in solution. Photochem. Photobiol. Sci. 42: 295307.

    CAS  Google Scholar 

  • Cunningham, F.X., Gantt, E. 1998. Genes and enzymes of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 557583.

    PubMed  CAS  Google Scholar 

  • Cunningham, F.X. 2002. Regulation of carotenoid synthesis and accumulation in plants. Pure Appl. Chem. 74: 14091417.

    CAS  Google Scholar 

  • Cuttriss, A,J., Pogson, B.J. 2006. Carotenoids. In: Wise, R.R., Hoober, J.K. (Eds.). The Structure and Function of Plastids. Dordrecht, The Netherlands: Springer. pp. 315–334.

    Google Scholar 

  • Davies, J.N., Hobson G.E. 1981. The constituents of tomato fruit – the influence of environment, nutrition, and genotype. Crit. Rev. Food. Sci. Nutr. 15: 205–280.

    PubMed  CAS  Google Scholar 

  • Davies, K.M. 2007. Genetic modification of plant metabolism for human health benefits. Mutat Res. 622: 122–137.

    PubMed  CAS  Google Scholar 

  • Davison, P.A., Hunter, C.N., Horton, P. 2002. Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418: 203206.

    PubMed  CAS  Google Scholar 

  • Davuluri, G.R., van Tuinen, A., Mustilli, A.C., Manfredonia, A., Newman, R., Burgess, D., Brummell, D.A., King, S.R., Palys, J., Uhlig, J., Pennings, H.M., Bowler, C. 2004. Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing. Plant J. 40: 344–354.

    PubMed  CAS  Google Scholar 

  • Davuluri, G.R., van Tuinen, A., Fraser, P.D., Manfredonia, A., Newman, R., Burgess, D., Brummell, D.A., King, S.R., Palys, J., Uhlig, J., Bramley, P.M., Pennings, H.M., Bowler, C. 2005. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat. Biotechnol. 23: 825–826.

    Google Scholar 

  • DellaPenna, D., Pogson, B.J. 2006. Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol. 57: 711–738.

    PubMed  CAS  Google Scholar 

  • Dharmapuri, S., Rosati, C., Pallara, P., Aquilani, R., Bouvier, F., Camara, B., Giuliano, G. 2002. Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett. 519: 30–34.

    PubMed  CAS  Google Scholar 

  • Di Mascio, P., Kaiser, S., Sies, H. 1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 274: 532–538.

    PubMed  Google Scholar 

  • Diretto, G., Al-Babili, S., Tavazza, R., Papacchioli, V., Beyer, P., Giuliano, G. 2007. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE 2: e350.

    PubMed  Google Scholar 

  • Dixon, R.A., Paiva, N.L. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell. 7: 1085–1097.

    PubMed  CAS  Google Scholar 

  • Dixon, R.A. 2005. Engineering of plant natural product pathways. Curr. Opin. Plant Biol. 8: 329336.

    PubMed  CAS  Google Scholar 

  • Dooner, H.K., Robbins, T.P., Jorgensen, R.A. 1991. Genetic and developmental control of anthocyanin biosynthesis. Annu. Rev. Genet. 25: 173–199.

    PubMed  CAS  Google Scholar 

  • Duarte, J., Perez-Palencia, R., Vargas, F., Ocete, M.A., Perez-Vizcaino, F., Zarzuelo, A., Tamargo, J. 2001. Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br. J. Pharmacol. 133: 117–124.

    PubMed  CAS  Google Scholar 

  • Dugas, A.J., Castaneda Acosta, J., Bonin, G.C., Price, K.L., Fischer, N.H., Winston, G.W. 2000. Evaluation of the total peroxyl radical-scavenging capacity of flavonoids: Structure-activity relationships. J. Nat. Prod. 63: 327331.

    PubMed  CAS  Google Scholar 

  • Duthie, G., Crozier, A. 2000. Plant-derived phenolic antioxidants. Curr. Opin. Lipidol. 11: 4347.

    PubMed  CAS  Google Scholar 

  • Elomaa, P., Honkanen, J., Puska, R., Seppänen, P., Helariutta, Y., Mehto, M., Kotilainen, M., Nevalainen, L., Teeri T.H. 1993. Agrobacterium mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation. Bio/Technology 11: 508–511.

    CAS  Google Scholar 

  • Enfissi, E.M.A., Fraser, P.D., Lois, L-M., Boronat, A., Schuch, W., Bramley, P.M. 2005. Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol. J. 3: 17–27.

    PubMed  CAS  Google Scholar 

  • Ferrières, J. 2004. The French paradox: lessons for other countries. Heart 90:107–111.

    PubMed  Google Scholar 

  • Fiehn, O. 2002. Metabolomics-the link between genotypes and phenotypes. Plant Mol. Biol. 48: 155–171.

    PubMed  CAS  Google Scholar 

  • Foolad, M.R. 2007. Genome mapping and molecular breeding of tomato. International J. of Plant Genomics 2007: 1–52.

    Google Scholar 

  • Formica, J.V., Regelson, W. 1995. Review of the biology of quercetin and related bioflavonoids. Fd. Chem. Toxic. 33: 10611080.

    CAS  Google Scholar 

  • Frankel, E.N. 1999. Food antioxidants and phytochemicals: Present and future perspectives. Fett. Lipid 101: 450455.

    CAS  Google Scholar 

  • Fraser, P.D., Romer, S., Shipton, C.A., Mills, P.B., Kiano, J.W., Misawa, N., Drake, R.G., Schuch, W., Bramley, P.M. 2002. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc. Natl. Acad. Sci. USA. 99: 1092–1097.

    PubMed  CAS  Google Scholar 

  • Fraser, P.D., Bramley, P.M. 2004. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43: 228–265.

    PubMed  CAS  Google Scholar 

  • Fray, R.G., Grierson, D. 1993. Identification and genetic-analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol. Biol. 22: 589–602.

    PubMed  CAS  Google Scholar 

  • Fray, R.G., Wallace, A., Fraser, P.D., Valero, D., Hedden, P., Bramley, P.M., Grierson, D. 1995. Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. The Plant J. 8: 693–701.

    CAS  Google Scholar 

  • Fuhrman, B., Volkova, N., Rosenblat, M., Aviram, M. 2000. Lycopene synergistically inhibits LDL oxidation in combination with vitamin E, glabridin, rosmarinic acid, carnosic acid, or garlic. Antioxid Redox Signal 2: 491–506.

    PubMed  CAS  Google Scholar 

  • Galati, G., O’Brien, P.J. 2004. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med. 37: 287303.

    PubMed  CAS  Google Scholar 

  • Galili, G., Galili, S., Lewinsohn, E., Tadmor Y. 2002. Genetic, molecular, and genomic approaches to improve the value of plant foods and feeds. Crit. Rev. in Plant Sci. 21: 167204.

    CAS  Google Scholar 

  • Galpaz, N., Wang, Q., Menda, N., Zamir, D., Hirschberg, J. 2008. Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J. 53: 717–730.

    Google Scholar 

  • Gerster, H. 1997. The potential role of lycopene for human health. J. Am. Coll. Nutr. 16: 109126.

    CAS  Google Scholar 

  • Giliberto, L., Perrotta, G., Pallara, P., Weller, J.L., Fraser, P.D., Bramley, P.M., Fiore, A., Tavazza, M., Giuliano, G. 2005. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol. 137: 199–208.

    PubMed  CAS  Google Scholar 

  • Giorgiev, C. 1972. Anthocyanin fruit tomato. Rep. Tomato. Genet. Coop. 22: 10.

    Google Scholar 

  • Goff, S.A., Klein, T.M., Roth, B.A., Fromm, M.E., Cone, K.C., Radicella, J.P., Chandler, V.L. 1990. Transactivation of anthocyanin biosynthesis genes following transfer of B regulatory genes into maize tissues. EMBO J. 9: 2517–2522.

    PubMed  CAS  Google Scholar 

  • Guohua, C., Sofic, E., Prior, R.L. 1997. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic. Biol. Med. 22: 749760

    Google Scholar 

  • Harborne, J.B. 1986. Nature, distribution and function of plant flavonoids. Prog. Clin. Biol. Res. 213: 15–24.

    PubMed  CAS  Google Scholar 

  • Harborne, J.B. 1994. The flavonoids, advances in research since 1986. Chapman & Hall, London.

    Google Scholar 

  • Havaux, M., Niyogi, K.K. 1999. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc. Nat. Acad. Sci. USA 96: 87628767.

    PubMed  CAS  Google Scholar 

  • Heber, D., Bowerman, S. 2001. Applying science to changing dietary patterns. J. Nutr. 131: 3078S–3081S.

    PubMed  CAS  Google Scholar 

  • Helariutta, Y., Elomaa, P., Kotilainen, M., Seppänen, P., Teeri, T. 1993. Cloning of cDNA coding for dihydroflavonol-4-reductase (DFR) and characterization of dfr expression in the corollas of Gerbera hybrida var. Regina (Compositae) Plant Mol. Biol. 22: 183–193.

    CAS  Google Scholar 

  • Helariutta, Y., Elomaa, P., Kotilainen, M., Giersbach, R.J., Schröder, J., Teeri, T.H. 1995. Chalcone synthase-like genes active during corolla development are differentially expressed and encode enzymes with different catalytic properties in Gerbera hybrida (Asteraceae). Plant Mol. Biol. 28: 47–60.

    PubMed  CAS  Google Scholar 

  • Hertog, M.G., Feskens, E.J., Hollman, P.C., Katan, M.B., Kromhout, D. 1993. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet 342: 1007–1011.

    PubMed  CAS  Google Scholar 

  • Hertog, M.G.L., Hollman, P.C.H. 1996. Potential health effects of the dietary flavonol quercetin. Eur. J. Clin. Nutr. 50: 6371.

    PubMed  CAS  Google Scholar 

  • Hirschberg, J. 2001. Carotenoid biosynthesis in flowering plants. Curr. Opin. Plant Biol. 4: 210218.

    PubMed  CAS  Google Scholar 

  • Hollman, P.C.H., Katan, M.B. 1999. Health effects and bioavailability of dietary flavonols. Free Radical Res. 31: S75S80.

    CAS  Google Scholar 

  • Holt, N.E., Fleming, G.R., Niyogi, K.K. 2004. Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 43: 82818289.

    PubMed  CAS  Google Scholar 

  • Holt, N.E., Zigmantas, D., Valkunas, L., Li, X.P., Niyogi, K.K., Fleming, G.R. 2005. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307: 433436.

    PubMed  CAS  Google Scholar 

  • Holton, T.A., Cornish, E.C. 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7: 1071–1083.

    PubMed  CAS  Google Scholar 

  • Howitt, C.A., Pogson, B.J. 2006. Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell Environ. 29: 435445.

    PubMed  CAS  Google Scholar 

  • Hu, J., McCall, C.M., Ohta, T. Xiong, Y. 2004. Targeted ubiquitination of CDT1 by the DDB1–CUL4A–ROC1 ligase in response to DNA damage. Nat. Cell. Biol. 6: 10031009.

    PubMed  CAS  Google Scholar 

  • Isaacson, T., Ronen, G., Zamir, D., Hirschberg, J. 2002. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-Carotene and xanthophylls in plants. Plant Cell 14: 333–342.

    PubMed  CAS  Google Scholar 

  • Ishida, B.K., Roberts, J.S., Chapman, M.H., Burri, B.J. 2007. Processing tangerine tomatoes: effects on lycopene-isomer concentrations and profile. J. Food Sci. 72: C307–C312.

    PubMed  CAS  Google Scholar 

  • Janssen, K., Mensink, R.P., Cox, F.J., Harryvan, J.L., Hovenier, R., Hollman, P.C., Katan, M.B. 1998. Effects of the flavonoids quercetin and apigenin on hemostasis in healthy volunteers: Results from an in vitro and a dietary supplement study. Am. J. Clin. Nutr. 67: 255–262.

    PubMed  CAS  Google Scholar 

  • Johnson, E.J. 2002. The role of carotenoids in human health. Nutr. Clin. Care. 5: 56–65.

    PubMed  Google Scholar 

  • Jones, C.M., Mes, P., Myers, J.R. 2003. Characterization and inheritance of the Anthocyanin fruit (Aft) tomato. J. Hered. 94: 449–456.

    PubMed  CAS  Google Scholar 

  • Joseph, J.A., Nadeau, D.A., Underwood, A. 2003. The color code: A revolutionary eating plan for optimum health. Hyperion Books, Barnes and Noble publishers.

    Google Scholar 

  • Josse, E.M., Simkin, A.J., Gaffé, J., Labouré, A.M., Kuntz, M., Carol, P. 2000. A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol. 123: 1427–1436.

    PubMed  CAS  Google Scholar 

  • Kawaii, S., Tomono, Y., Katase, E., Ogawa, K., Yano, M. 1999. Antiproliferative activity of flavonoids on several cancer cell lines. Biosci. Biotechnol. Biochem. 63: 896–899.

    PubMed  CAS  Google Scholar 

  • Kawanishi, S., Oikawa, S., Murata, M. 2005. Evaluation for safety of antioxidant chemopreventive agents. Antioxid. Redox Signal. 7: 17281739.

    PubMed  CAS  Google Scholar 

  • Keli, S.O., Hertog, M.G., Feskens, E.J., Kromhout, D. 1996. Dietary flavonoids, antioxidant vitamins, and incidence of stroke: The Zutphen study. Arch. Intern. Med. 156: 637642.

    PubMed  CAS  Google Scholar 

  • Key, T.J., Schatzkin, A., Willett, W.C., Allen, N.E., Spencer, E.A., Travis, R.C. 2004. Diet, nutrition and the prevention of cancer. Public Health Nutr. 7: 187–200.

    PubMed  Google Scholar 

  • Khachik, F., Carvalho, L., Bernstein, P.S., Muir, G.J., Zhao, D.Y., Katz, N.B. 2002. Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Exp. Biol. Med. (Maywood). 227: 845–851.

    CAS  Google Scholar 

  • Koes, R.E., Quattrocchio, F., Mol, J.N.M. 1994. The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 16: 123–132.

    CAS  Google Scholar 

  • Kohlmeier, L., Kark, J.D., Gomez-Gracia, E., Martin, B.C., Steck, S.E., Kardinaal, A.F., Ringstad, J., Thamm, M., Masaev, V., Riemersma, R., Martin-Moreno, J.M., Huttunen, J.K., Kok, F.J. 1997. Lycopene and myocardial infarction risk in the EURAMIC Study. Am. J. Epidemiol. 146: 618–626.

    PubMed  CAS  Google Scholar 

  • Kolotilin, I., Koltai, H., Tadmor, Y., Bar-Or, C., Reuveni, M., Meir, A., Nahon, S., Shlomo, H., Chen, L., and Levin, I. 2007. Transcriptional profiling of high pigment-2 dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients. Plant physiol. 145: 389–401.

    PubMed  CAS  Google Scholar 

  • Kulheim, C., Agren, J., Jansson, S. 2002. Rapid regulation of light harvesting and plant fitness in the field. Science 297: 9193.

    PubMed  Google Scholar 

  • Le Gall, G., DuPont, M.S., Mellon, F.A., Davis, A.L., Collins, G.J., Verhoeyen, M.E., Colquhoun, I.J. 2003. Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J. Agric Food Chem. 51: 2438–2446.

    PubMed  Google Scholar 

  • Lean, M.E., Noroozi, M., Kelly, I., Burns, J., Talwar, D., Sattar, N., Crozier, A. 1999. Dietary flavonols protect diabetic human lymphocytes against oxidative damage to DNA. Diabetes 48: 17681.

    PubMed  CAS  Google Scholar 

  • Levy, J., Bosin, E., Feldman, B., Giat, Y., Miinster, A., Danilenko, M., Sharoni, Y. 1995. Lycopene is a more potent inhibitor of human cancer cell proliferation than either α-carotene or β-carotene. Nutr. Cancer. 24: 257–266.

    PubMed  CAS  Google Scholar 

  • Levin, I., Frankel, P., Gilboa, N., Tanny, S., Lalazar, A. 2003. The tomato dark green mutation is a novel allele of the tomato homolog of the DEETIOLATED1 gene. Theor. Appl. Genet. 106: 454–460.

    PubMed  CAS  Google Scholar 

  • Levin, I., Lalazar, A., Bar, M., Schaffer, A.A. 2004. Non-GMO fruit factories: strategies for modulating metabolic pathways in the tomato fruit. Industrial Crops and Products 20: 2936.

    CAS  Google Scholar 

  • Levin, I., de Vos, C.H.R., Tadmor, Y., Bovy, A., Lieberman, M., Oren-Shamir, M., Segev, O., Kolotilin, I., Keller, M., Ovadia, R., Meir, A., Bino, R.J. 2006. High pigment tomato mutants- more than just lycopene (a review). Israel J. of Plant Sci. 54: 179–190.

    CAS  Google Scholar 

  • Li, L., Van Eck, J. 2007. Metabolic engineering of carotenoid accumulation by creating a metabolic sink. Transgenic Res. 16: 581585.

    PubMed  Google Scholar 

  • Lichtenthaler, H.K. 1999. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 4765.

    PubMed  CAS  Google Scholar 

  • Lieberman, M., Segev, O., Gilboa, N., Lalazar, A., Levin, I. 2004. The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype. Theor. Appl. Genet. 108: 1574–1581.

    PubMed  CAS  Google Scholar 

  • Lila, M.A. 2007. From beans to berries and beyond: teamwork between plant chemicals for protection of optimal human health. Ann. N.Y. Acad. Sci. 1114: 372–380.

    PubMed  CAS  Google Scholar 

  • Liu, Y., Roof, S., Ye, Z., Barry, C., van Tuinen, A., Vrebalov, J., Bowler, C., Giovannoni, J. 2004. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc. Natl. Acad. Sci. USA 101: 9897–9902.

    PubMed  CAS  Google Scholar 

  • Liu, Y.S., Gur, A., Ronen, G., Causse, M., Damidaux, R., Buret, M., Hirschberg, J., Zamir, D. 2003. There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol. J. 1:195–207.

    PubMed  CAS  Google Scholar 

  • Lloyd, A.M., Walbot V., Davis R.W. 1992. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258: 1773–1775.

    PubMed  CAS  Google Scholar 

  • Lokstein, H., Tian, L., Polle, J.E, DellaPenna, D. 2002. Xanthophyll biosynthetic mutants of Arabidopsis thaliana: Altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in Photosystem II antenna size and stability. Biochim. Biophys. Acta 1553: 309319.

    PubMed  CAS  Google Scholar 

  • Lu, S., Eck Van, J., Zhou, X., Lopez, A.B., O’Halloran, D.M., Cosman, K.M., Conlin, B.J., Paolillo, D.J., Garvin, D.F., Vrebalov, J., Kochian, L.V., Kupper, H., Earle, E.D., Cao, J., Li, L. 2006. The cauliflower Or gene encodes a DnaJ cysteine-rich domain containing protein that mediates high levels of β-carotene accumulation. Plant Cell 18: 35943605.

    PubMed  CAS  Google Scholar 

  • Macheix, J.J., Fleuriet, A., Billot, J. 1990. Fruit Phenolics. Boca Raton, FL, CRC Press.

    Google Scholar 

  • Mackinney, G., Rick, C.M., Jenkins, J.A. 1956. The phytoene content of tomatoes. Proc. Natl. Acad. Sci. USA. 42: 404–408.

    PubMed  CAS  Google Scholar 

  • Manach, C., Regerat, F., Texier. O., Agullo, G., Demigne, C., Remesy, C. 1996. Bioavailability, metabolism and physiological impact of 4-oxo-flavonoids. Nutr. Res. 16: 517544.

    CAS  Google Scholar 

  • Martin, C., Prescott, A., Mackay, S., Bartlett, J., Vrijlandt, E. 1991. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J. 1: 37–49.

    PubMed  CAS  Google Scholar 

  • Mathews, H., Clendennen, S.K., Caldwell, C.G., Liu, X.L., Connors, K., Matheis, N., Schuster, D.K., Menasco, D.J., Wagoner, W., Lightner, J., Wagner, D.R.Y. 2003. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15: 16891703.

    PubMed  CAS  Google Scholar 

  • Mayne, S.T. 1996. Beta-carotene, carotenoids, and disease prevention in humans. FASEB J. 10: 690–701.

    PubMed  CAS  Google Scholar 

  • McClintock, B. 1967. Regulation of patter of gene expression by controlling elements in maize. Carnegie Inst. Yearb. 65: 568–578.

    Google Scholar 

  • Mehta, R.A., Cassol, T., Li, N., Ali, N., Handa, A.K., Mattoo, A.K. 2002. Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat. Biotechnol. 20: 613–618.

    PubMed  CAS  Google Scholar 

  • Metodiewa, D., Jaiswal, A.K., Cenas, N., Dickancaite, E., Segura-Aguilar, J. 1999. Quinone may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic. Biol. Med. 26: 107116.

    PubMed  CAS  Google Scholar 

  • Mochizuki, T., Kamimura, S. 1984. Inheritance of vitamin C content and its relation to other characters in crosses between hp and og varieties of tomatoes. In: Synopsis of the 9th meeting of the Eucarpia Tomato Working Group, Wageningen, the Netherlands, 22–24 May 1984, pp. 8–13.

    Google Scholar 

  • Mol, J., Grotewold, E., Koes, R. 1998. How genes paint flowers and seeds? Trends Plant Sci. 3: 212–217.

    Google Scholar 

  • Muir, S.R., Collins, G.J., Robinson, S., Hughes, S., Bovy, A., Ric de Vos, C.H.R., van Tunen, A.J., Verhoeyen, M.E. 2001. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat. Biotechnol. 19: 470–474.

    PubMed  CAS  Google Scholar 

  • Mustilli, A.C., Fenzi, F., Ciliento, R., Alfano, F., Bowler, C. 1999. Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell 11: 145–157.

    PubMed  CAS  Google Scholar 

  • Nakamura, N., Fukuchi-Mizutani, M., Miyazaki, K., Suzuki, K., Tanaka, Y. 2006. RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant Biotech. 23: 1317.

    CAS  Google Scholar 

  • Ng, T.B., Liu, F., Wang, Z.T. 2000. Antioxidative activity of natural products from plants. Life Sci. 66: 709723.

    PubMed  CAS  Google Scholar 

  • Ninu, L., Ahmad, M., Miarelli, C., Cashmore, A.R., Giuliano, G. 1999. Cryptochrome 1 controls tomato development in response to blue light. Plant J.18: 551–556.

    PubMed  CAS  Google Scholar 

  • Niyogi, K.K. 1999. Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 333359.

    CAS  Google Scholar 

  • Norris, S.R., Barrette, T.R., DellaPenna, D. 1995. Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell 7: 21392149.

    PubMed  CAS  Google Scholar 

  • Ogata, S., Miyake, Y., Yamamoto, K., Okumura, K., Taguchi, H. 2000. Apoptosis induced by the flavonoid from lemon fruit (Citrus limon BURM. f.) and its metabolites in HL-60 cells. Biosci. Biotechnol. Biochem. 64: 1075–1078.

    PubMed  CAS  Google Scholar 

  • Olthof, M.R., Hollman, P.C., Vree, T.B., Katan, M.B. 2000. Bioavailabilities of quercetin-3-glucoside and quercetin-4’-glucoside do not differ in humans. J. Nutr. 130: 1200–1203.

    PubMed  CAS  Google Scholar 

  • Omenn, G.S. 1998. Chemoprevention of lung cancer: the rise and demise of beta-carotene. Annu. Rev. Public Health 19: 73–99.

    PubMed  CAS  Google Scholar 

  • Paine, J.A., Shipton, C.A., Chaggar, S., Howells, R.M., Kennedy, M.J., Vernon, G., Wright, S.Y., Hinchliffe, E., Adams, J.L., Silverstone, A.L., Drake, R. 2005 Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23: 482487.

    PubMed  CAS  Google Scholar 

  • Park, H., Kreunen, S.S., Cuttriss, A.J., DellaPenna, D., Pogson, B.J. 2002. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14: 321332.

    PubMed  CAS  Google Scholar 

  • Parr, A.J., Bolwell, G.P. 2000. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 80: 985–1012.

    CAS  Google Scholar 

  • Penniston, K.L., Tanumihardjo, S.A. 2006. The acute and chronic toxic effects of vitamin A. Am. J. Clin. Nutr. 83: 191–201.

    PubMed  CAS  Google Scholar 

  • Peters, J.L., van Tuinen, A., Adamse, P., Kendrick, R.E., Koornneef, M. 1989. High pigment mutants of tomato exhibit high sensitivity for phytochrome action. J. Plant Physiol. 134: 661666.

    CAS  Google Scholar 

  • Pogson, B., McDonald, K., Truong, M., Britton, G., DellaPenna, D. 1996. Arabidopsis carotenoid mutants demonstrate lutein is not essential for photosynthesis in higher plants. Plant Cell 8: 162739.

    PubMed  CAS  Google Scholar 

  • Pogson, B.J., Niyogi, K.K., Björkman, O., DellaPenna, D. 1998. Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc. Nat. Acad. Sci. USA 95: 1332413329.

    PubMed  CAS  Google Scholar 

  • Proteggente, A.R., Pannala, A.S., Paganga, G., Van Buren. L., Wagner, E., Wiseman, S., Van De Put, F., Dacombe. C., Rice-Evans, C.A. 2002. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radic. Res. 36: 217233.

    PubMed  CAS  Google Scholar 

  • Rao, A.V., Agarwal, S. 1998. Bioavailability and in vivo antioxidant properties of lycopene from tomato products and their possible role in the prevention of cancer. Nutr. Cancer 31: 199–203.

    PubMed  CAS  Google Scholar 

  • Rao, A.V. 2002. Lycopene, tomatoes, and the prevention of coronary heart disease. Exp. Biol. Med. (Maywood). 227: 908–913.

    CAS  Google Scholar 

  • Riboli, E., Norat, T. 2003. Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am. J. Clin. Nutr. 78: 559S–569S.

    PubMed  CAS  Google Scholar 

  • Rice-Evans, C.A., Miller, N.J., Paganga, G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 20: 933–956.

    PubMed  CAS  Google Scholar 

  • Rice-Evans, C.A., Miller, N.J., Paganga, G., Miller, N. 1997. Antioxidant properties of phenolic compounds: The polyphenolic content of fruit and vegetables and their antioxidant activities. What does a serving constitute? Trends Plant Sci. 2: 152159.

    Google Scholar 

  • Rick, C.M. 1964. Biosystematic studies on Galapagos Island tomatoes. Occas. Paper Calif. Acad. Sci. 44: 59.

    Google Scholar 

  • Rick, C.M., Cisneros, P., Chetelat, R.T., Deverona, J.W. 1994. Abg, a gene on chromosome 10 for purple fruit derived from S. lycopersiciodes. Rep. Tomato Genet. Coop. 44: 2930.

    Google Scholar 

  • Robards, K., Antolovich, M. 1997. Analytical chemistry of fruit bioflavonoids. Analyst 122: 11R–34R.

    CAS  Google Scholar 

  • Romer, S., Fraser, P.D., Kiano, J.W., Shipton, C.A., Misawa, N., Schuch, W., Bramley, P.M. 2000. Elevation of the provitamin A content of transgenic tomato plants. Nat. Biotechnol. 18: 666–669.

    PubMed  CAS  Google Scholar 

  • Ronen, G., Cohen, M., Zamir, D., Hirschberg, J. 1999. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J. 17: 341–351.

    PubMed  CAS  Google Scholar 

  • Ronen, G., Carmel-Goren, L., Zamir, D., Hirschberg, J. 2000. An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta (B) and old-gold (og) colour mutations in tomato. Proc. Natl. Acad. Sci. USA 97: 11102–11107.

    PubMed  CAS  Google Scholar 

  • Rosati, C., Aquilani, R., Dharmapuri, S., Pallara, P., Marusic, C., Tavazza, R., Bouvier, F., Camara, B., Giuliano, G. 2000. Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J. 24: 413–419.

    PubMed  CAS  Google Scholar 

  • Ross, J.A., Kasum, C.M. 2002. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 22: 19–34.

    PubMed  CAS  Google Scholar 

  • Sapir, M., Oren-Shamir, M., Ovadia, R., Reuveni, M., Evenor, D., Tadmor, Y., Nahon, S., Shlomo, H., Chen, L., Meir, A., Levin, I. 2008. Molecular Aspects of Anthocyanin fruit Tomato in Relation to high pigment-1. J. Hered. 99: 292–303.

    Google Scholar 

  • Schijlen, E.G., de Vos, R.C.H, van Tunen, A.J., Bovy, A.G. 2004. Modification of flavonoid biosynthesis in crop plants. Phytochemistry 65: 2631–2648.

    PubMed  CAS  Google Scholar 

  • Schijlen, E., Ric de Vos, C.H., Jonker, H., van den Broeck, H., Molthoff, J., van Tunen, A., Martens, S., Bovy, A. 2006. Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnol. J. 4: 433–444.

    PubMed  CAS  Google Scholar 

  • Schroeder, D.F., Gahrtz, M., Maxwell, B.B., Cook, R.K., Kan, J.M., Alonso, J.M., Ecker, J.R., Chory, J. 2002. De-etiolated 1 and damaged DNA binding protein 1 interact to regulate Arabidopsis photomorphogenesis. Curr. Biol. 12: 1462–1472.

    PubMed  CAS  Google Scholar 

  • Shewmaker, C.K., Sheehy, J.A., Daley, M., Colburn, S., Ke, D.Y. 1999. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J. 20: 401412X.

    PubMed  CAS  Google Scholar 

  • Shih, H., Pickwell, G.V., Quattrochi. L.C. 2000. Differential effects of flavonoid compounds on tumor promoter-induced activation of the human CYP1A2 enhancer. Arch. Biochem. Biophys. 373: 287294.

    PubMed  CAS  Google Scholar 

  • Shirley, B.W., Kubasek, W.L., Storz, G., Bruggemann, E., Koornneef, M., Ausubel, F., Goodman, H.M. 1995. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J. 8: 659–671.

    PubMed  CAS  Google Scholar 

  • Sies, H., Stahl, W. 2003. Non-nutritive bioactive constituents of plants: lycopene, lutein and zeaxanthin. Int. J. Vitam. Nutr. Res. 73: 95–100.

    PubMed  Google Scholar 

  • Simkin, A.J., Gaffé, J., Alcaraz, J.P., Carde, J.P., Bramley, P.M., Fraser, P.D., Kuntz, M. 2007. Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit. Phytochemistry 68: 1545–1556.

    PubMed  CAS  Google Scholar 

  • Singh, R.P., Agarwal, R. 2006. Natural flavonoids targeting deregulated cell cycle progression in cancer cells. Curr. Drug Targets 7: 345–354.

    PubMed  CAS  Google Scholar 

  • Skibola, C.F., Smith, M.T. 2000. Potential health impact of excessive flavonoid intake. Free Radic. Biol. Med. 29: 375383.

    CAS  Google Scholar 

  • Sloan, A.E. 2000. The top ten functional food trends. Food Technol. 54: 33–62.

    Google Scholar 

  • Srinath Reddy, K., Katan, M.B. 2004. Diet, nutrition and the prevention of hypertension and cardiovascular diseases. Public Health Nutr. 7: 167–186.

    PubMed  CAS  Google Scholar 

  • Stahl, W., Sies, H. 1996. Lycopene: a biologically important carotenoid for humans? Arch. Biochem. Biophys. 336:1–9.

    CAS  Google Scholar 

  • Steinmetz, K.A., Potter, J.D. (1996) Vegetables, fruit, and cancer prevention: A review. J. Am. Diet Assoc. 96: 10271039.

    PubMed  CAS  Google Scholar 

  • Stevens, M.A., Rick, C.M. 1986. Genetics and breeding. In: Atherton, J.G., Rudich, J. (Eds.) The tomato crop: A scientific basis for improvement. Chapman and Hall, New York, USA pp. 35109.

    Google Scholar 

  • Stewart, A.J., Bozonnet, S., Mullen, W., Jenkins, G.I., Lean, M.E., Crozier, A. 2000. Occurrence of flavonols in tomatoes and tomato-based products. J. Agric. Food Chem. 48: 2663–2669.

    PubMed  CAS  Google Scholar 

  • Sugihara, N., Arakawa, T., Ohnishi, M., Furuno, K. 1999. Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with alpha-linolenic acid. Free Radical Biol. Med. 27:13131323.

    CAS  Google Scholar 

  • Taylor, L.P., Briggs, W.R. 1990. Genetic regulation and photocontrol of anthocyanin accumulation in maize seedlings. Plant Cell 2: 115–127.

    PubMed  CAS  Google Scholar 

  • Tomes, M.L., Quackenbush, F.L., Nelsom, O.E., North, B. 1953. The inheritance of carotenoid pigment systems in the tomato. Genetics 38: 117127.

    PubMed  CAS  Google Scholar 

  • Tonelli, C., Consonni, G., Dellaporta, S.L., Viotti, A., Gavazzi, G. 1991. Molecular analysis of the maize anthocyanin regulatory locus Sn:Bol3, a light independent and tissue specific gene of maize. Mol. Gen. Genet. 199: 201–207.

    Google Scholar 

  • Trevisanato, S.I., Kim, Y.I. (2000) Tea and health. Nutr. Rev. 58: 110.

    PubMed  CAS  Google Scholar 

  • Unlu, N.Z., Bohn, T., Francis, D., Clinton, S.K., Schwartz. S.J. 2007. Carotenoid absorption in humans consuming tomato sauces obtained from tangerine or high-β-carotene varieties of tomatoes. J. Agric. Food Chem. 55: 1597–1603.

    PubMed  CAS  Google Scholar 

  • van Tuinen, A., Cordonnier-Prat, M-M., Pratt, L.H., Verkerk, R., Zabel, P., Koornneef, M. 1997. The mapping of phytochrome genes and photomorphogenic mutants of tomato. Theor. Appl. Genet. 94: 115122.

    PubMed  Google Scholar 

  • van Tuinen, A., de Vos, C.H.R., Hall, R.D., Linus, H.W., van der Plas, L.H.W., Bowler, C., Bino, R.J. 2006. Use of metabolomics for identification of tomato genotypes with enhanced nutritional value derived from natural light-hypersensitive mutants. In: Plant genetic engineering Vol. 7: metabolic engineering and molecular farming–1. (Jaiwal PK ed). Studium Press, LLC, Huston, Texas, USA. pp. 240–256.

    Google Scholar 

  • van der Krol, A., Lenting, P., Veenstra, J., van der Meer, I., Koes R. 1988. An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333: 866–869.

    Google Scholar 

  • Verhoeyen, M.E., Bovy, A., Collins, G., Muir, S., Robinson, S., de Vos, C.H., Colliver, S. 2002. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J. Exp. Bot. 53: 2099–2106.

    PubMed  CAS  Google Scholar 

  • Wang, N., Fang. W., Han, H., Sui, N., Li, B., Meng, Q.-W. 2008. Overexpression of zeaxanthin epoxidase gene enhances the sensitivity of tomato PSII photoinhibition to high light and chilling stress. Physiol. Plant. 132: 384396.

    PubMed  CAS  Google Scholar 

  • Wann, E.V., Jourdain, E.L., Pressey, R., Lyon, B.G. 1985. Effect of mutant genotypes hp og c and dg og c on tomato fruit quality. J. Am. Soc. Hortic. Sci. 110: 212–215.

    CAS  Google Scholar 

  • Wann, E.V. 1997. Tomato germplasm lines T4065, T4099, T5019, and T5020 with unique genotypes that enhance fruit quality. Hortic. Sci. 32: 747–748.

    Google Scholar 

  • Weisshaar, B., Jenkins, G.I. 1998. Phenylpropanoid biosynthesis and its regulation. Curr. Opin. Plant Biol. 1: 251–257.

    PubMed  CAS  Google Scholar 

  • Wertz, I.E., O’Rourke, K.M., Zhang, Z., Dornan, D., Arnott, D., Deshaies, R.J., Dixit, V.M. 2004. Human de-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science 303: 1371–1374.

    PubMed  CAS  Google Scholar 

  • West, K.P.Jr. 2003. Vitamin A deficiency disorders in children and women. Food Nutr. Bull. 24: S78–S90.

    PubMed  Google Scholar 

  • Willcox, J.K., Catignani, G.L., Lazarus, S. 2003. Tomatoes and cardiovascular health. Crit. Rev. Food Sci. Nutr. 43: 1–18.

    PubMed  CAS  Google Scholar 

  • Willits, M.G., Kramer, C.M., Prata, R.T., De Luca, V., Potter, B.G., Steffens, J.C., Graser, G. 2005. Utilization of the genetic resources of wild species to create a nontransgenic high flavonoid tomato. J Agric. Food Chem. 53: 1231–1236.

    PubMed  CAS  Google Scholar 

  • Winkel-Shirley, B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol. 126: 485–493.

    PubMed  CAS  Google Scholar 

  • Wintergerst, E.S., Maggini, S., Hornig, D.H. 2007. Contribution of selected vitamins and trace elements to immune function. Ann. Nutr. Metab. 51: 301–323.

    PubMed  CAS  Google Scholar 

  • Wu, K., Erdman, J.W., Jr., Schwartz, S.J., Platz, E.A., Leitzmann, M., Clinton, S.K., DeGroff, V., Willett, W.C., Giovannucci, E. 2004. Plasma and dietary carotenoids, and the risk of prostate cancer: a nested case-control study. Cancer Epidemiol. Biomarkers Prev. 13: 260–269.

    PubMed  CAS  Google Scholar 

  • Ye, X., Al-Babili, S., Kloti, A., Zhang, J., Lucca, P., Beyer, P., Potrykus, I. 2000 Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303305.

    PubMed  CAS  Google Scholar 

  • Yen, H.C., Shelton, B.A., Howard, L.R., Vrebalov, S.L.J., Giovanonni, J.J. 1997. The tomato high-pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality. Theor. Appl. Genet. 95: 1069–1079.

    CAS  Google Scholar 

  • Yonekura-Sakakibara, K., Saito, K. 2006. Review: Genetically modified plants for the promotion of human health. Biotechnol Lett. 28: 1983–1991.

    PubMed  CAS  Google Scholar 

  • Zava, D.T., Duwe, G. 1997. Estrogenic and antiproliferative properties of genistein and other flavonoids in human breast cancer cells in vitro. Nutr. Cancer 27: 31–40.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Yaakov Tadmor from the Institute of Plant Sciences, the Volcani Center, Israel, for his contribution of tomato fruit photos to this chapter. The author also thanks Dr. Li Li from the USDA-ARS, Plant, Soil and Nutrition Laboratory, Cornell University, Ithaca, NY 14853, USA, for his contribution of cauliflower curd photos.

The purple smudge photo was kindly provided by Jim Myers and Peter Boches, Department of Horticulture, Oregon State University, USA.

The transgenic tomato and tobacco plants presented herein were generated as part of the M.Sc. theses of Miss Maya Sapir and Mr. Amir Butbool, under the guidance of the author, Dr. Michal Oren-Shamir and Dr. Moshe Reuveni and with the assistance of Dr. Dalia Evenor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilan Levin .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Levin, I. (2009). Regulating Phytonutrient Levels in Plants – Toward Modification of Plant Metabolism for Human Health. In: Recent Advances in Plant Biotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0194-1_12

Download citation

Publish with us

Policies and ethics