Nonlinear Variational Methods for Estimating Effective Properties of Multiscale Materials

  • Dag Lukkassen
  • Annette Meidell
  • Lars-Erik Persson
Part of the Springer Optimization and Its Applications book series (SOIA, volume 35)


We consider homogenization of sequences of integral functionals with natural growth conditions. Some means are analyzed and used to discuss some fairly new bounds for the homogenized integrand corresponding to integrands which are periodic in the spatial variable. These bounds, which are obtained by variational methods, are compared with the nonlinear bounds of Wiener and Hashin–Shtrikman type. We also point out conditions that make our bounds sharp. Several applications are presented. Moreover, we also discuss bounds for some linear reiterated two-phase problems with m different micro-levels in the spatial variable. In particular, the results imply that the homogenized integrand becomes optimal as m turns to infinity. Both the scalar case (the conductivity problem) and the vector-valued case (the elasticity problem) are considered. In addition, we discuss bounds for estimating the effective behavior described by homogenizing a problem which is a generalization of the Reynold equation.


Nonlinear Bound Effective Property Integral Functional Sharp Estimate Power Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Avellaneda, Optimal bounds and microgeometries for elastic composites, SIAM J. Appl. Math., 47(1987), 1216–1228.Google Scholar
  2. 2.
    N. Bakhvalov and G. Panasenko, Homogenization: Averaging Processes in Periodic Media, Kluwer Academic Publisher, Dordrecht, 1989.Google Scholar
  3. 3.
    E.F. Beckenbach, Convexity properties of generalized mean value functions, Ann. Math. Statist. 13 (1942), 88–90.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North–Holland, Amsterdam, 1978.MATHGoogle Scholar
  5. 5.
    A. Braides, An introduction to homogenization and Γ -convergence. Lecture Notes, School on homogenization, ICTP, Trieste, 1993.Google Scholar
  6. 6.
    A. Braides and A. Defranceschi. Homogenization of Multiple Integrals. Oxford Science Publications, Oxford, 1998.MATHGoogle Scholar
  7. 7.
    A. Braides and D. Lukkassen. Reiterated homogenization of integral functionals. Math. Mod. Meth. Appl. Sci. 10, 1 (2000), 1–25.CrossRefMathSciNetGoogle Scholar
  8. 8.
    P.S. Bullen, D.S. Mitrinović and P.M. Vasić, Means and their inequalities, D. Reidel Publishing Company, Dordrecht, 1988.MATHGoogle Scholar
  9. 9.
    G. A. Chechkin, A.L. Piatnitski and A. S. Shamaev, Homogenization. Methods and Applications. Translations of Mathematical Monographs, 234. American Mathematical Society, Providence, RI, 2007.Google Scholar
  10. 10.
    D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford Lecture Series in Mathematics and its Applications, 17, Oxford University Press, New York, 1999.Google Scholar
  11. 11.
    G. Dal Maso, An Introduction to Γ -convergence, Birkhäuser, Boston 1993.Google Scholar
  12. 12.
    E. De Georgie and S. Spagnolo, Sulla congergenza degli integrali dell’energia per operatori ellittici del 2’ ordine, Boll. Un. mat. Ital. 8 (1973), 391–411.MathSciNetGoogle Scholar
  13. 13.
    G.A. Francfort and F. Murat, Homogenization and optimal bounds in linear elasticity, Arch. Rational Mech. Anal. 94 (1986), 307–334.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    N. Fusco and G. Moscariello, On the homogenization of quasilinear divergence structure operators, Ann. Mat. Pura. Appl., 146 (1987), 1–13.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    L.V. Gibiansky, Bounds on effective moduli of composite materials, Lecture Notes, School on Homogenization, ICTP, Trieste, 1993.Google Scholar
  16. 16.
    Z. Hashin and S. Shtrikman, A variational approach to the theory of effective magnetic permeability of multiphase materials. J. Appl. Phys. 33 (1962), 3125–3131.MATHCrossRefGoogle Scholar
  17. 17.
    G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1934.Google Scholar
  18. 18.
    G. Isac, Leray-Schauder Type Alternatives, Complementarity Problems and Variational Inequalities. Nonconvex Optimization and its Applications, 87, Springer, New York, 2006.Google Scholar
  19. 19.
    V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994.Google Scholar
  20. 20.
    R. James, R. Lipton and A. Lutoborski, Laminar elastic composites with crystallographic symmetry, SIAM J. Appl. Math. 50, (1990), 683–702.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    J.-L. Lions, D. Lukkassen, L.-E. Persson and P. Wall. Reiterated homogenization of monotone operators, C. R. Acad. Sci., Paris, Ser. I , Math. 330, 8 (2000), 675–680.MathSciNetGoogle Scholar
  22. 22.
    J.-L. Lions, D. Lukkassen, L.-E. Persson and P. Wall. Reiterated homogenization of nonlinear monotone operators, Chin. Ann. Math., Ser. B , 22, 1 (2001), 1–14.MathSciNetGoogle Scholar
  23. 23.
    D. Lukkassen, Some sharp estimates connected to the homogenized p-Laplacian equation, ZAMM-Z. Angew. Math. Mech. 76, (1996) S2, 603–604.MATHGoogle Scholar
  24. 24.
    D. Lukkassen, Upper and lower bounds for averaging coefficients, Russian Math. Surveys 49, 4, (1994), 114–115.Google Scholar
  25. 25.
    D. Lukkassen, On estimates of the effective energy for the Poisson equation with a p-Laplacian. Russian Math. Surveys 51, 4, (1996), 739–740.CrossRefMathSciNetGoogle Scholar
  26. 26.
    D. Lukkassen, On some sharp bounds for the off-diagonal elements of the homogenized tensor, Applications of Math. 40 (1995), 401–406.MATHMathSciNetGoogle Scholar
  27. 27.
    D. Lukkassen. Some sharp estimates connected to the homogenized p-Laplacian equation. ZAMM-Z. Angew. Math. Mech. 76 (S2), (1996), 603–604.MATHGoogle Scholar
  28. 28.
    D. Lukkassen, Formulae and bounds connected to homogenization and optimal design of partial differential operators and integral functionals. Ph.D thesis, University of Tromsø, 1996.Google Scholar
  29. 29.
    D. Lukkassen. Bounds and homogenization of integral functionals. Acta Sci. Math. 64, (1998), 121–141.MATHMathSciNetGoogle Scholar
  30. 30.
    D. Lukkassen. Homogenization of integral functionals with extreme local properties. Math. Balk. New Series, 12, Fasc. 3–4, (1998), 339–358.MathSciNetGoogle Scholar
  31. 31.
    D. Lukkassen. Means of power type and their inequalities. Math. Nachr. 205, (1999), 131–147.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    D. Lukkassen. Sharp inequalities connected to the homogenized p-Poisson equation. Math. Inequal. Appl. 2, 2, (1999), 243–250.MATHMathSciNetGoogle Scholar
  33. 33.
    D. Lukkassen. A new reiterated structure with optimal macroscopic behavior. SIAM J. Appl. Math. 59, 5, (1999), 1825–1842.CrossRefMathSciNetGoogle Scholar
  34. 34.
    D. Lukkassen, A. Meidell and P. Wall. Bounds on the effective behavior of a homogenized Reynold-type equation. J. Funct. Spaces Appl. 5, 2, (2007), 133–150.MathSciNetGoogle Scholar
  35. 35.
    D. Lukkassen, A. Meidell and P. Wall. Multiscale homogenization of monotone operators. To appear in: Discrete and Continuous Dynamical Systems - Ser. A, 22, 3, (2008), 711–727.Google Scholar
  36. 36.
    D. Lukkassen and G. W. Milton, On hierarchical structures and reiterated homogenization, Proceedings of the Conference on Function Spaces, Interpolation Theory and Related Topics in Honour of Jaak Peetre on his 65th Birthday, August 17-22, 2000, 311–324, Walter de Gruyter, Berlin 2002.Google Scholar
  37. 37.
    D. Lukkassen, L.E. Persson and P. Wall. On some sharp bounds for the homogenized p-Poisson equation, Applicable Anal. 58 (1995), 123–135.MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    D. Lukkassen, J. Peetre and L.-E. Persson. On some iterated means arising in homogenization theory. Applications of Math. 49, 4, (2004), 343–356.CrossRefMathSciNetGoogle Scholar
  39. 39.
    A. Meidell. Homogenization and computational methods for calculating effective properties of some cellular solids and composite structures, Norwegian University of Science and Technology (NTNU), Dr. ing. thesis 2001:19, ISBN 82-7984-181-4, ISSN 0809-103X, Trondheim, Norway.Google Scholar
  40. 40.
    A. Meidell and P. Wall. Homogenization and design of structures with optimal macroscopic behaviour. In: Computer Aided Optimum Design of Structures V (Eds. S. Hernández, C. A. Breddia), 393–402. Computational Mechanics Publications, Southhampton, 1997.Google Scholar
  41. 41.
    G.W. Milton, Bounds on the complex dielectric constant of a composite material, Appl. Phys. Lett. 37 (1980), 300–320.CrossRefGoogle Scholar
  42. 42.
    G.W. Milton, The Theory of Composites, Cambridge University Press, London, 2002.MATHCrossRefGoogle Scholar
  43. 43.
    F. Murat and L. Tartar, H-convergence, in: Topics in Mathematical Modelling of Composite Materials, R. V. Kohn, ed., Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, Boston, 1994.Google Scholar
  44. 44.
    J. Peetre and L.E. Persson, A general Beckenbach’s inequality with applications, in: Functions Spaces Operator and Nonlinear Analysis, Pitman Research Notes in Mathematics 211 (1989), 125–139.MathSciNetGoogle Scholar
  45. 45.
    C. Niculescu and L.E. Persson, Convex Functions and Their Applications. A Contemporary Approach, CMS Books in Mathematics, Springer, Berline, 2006Google Scholar
  46. 46.
    L.E. Persson, The homogenization method and some of its applications, Mathematica Balkanika, new series 7 (1993), 179–190.MATHMathSciNetGoogle Scholar
  47. 47.
    L.E. Persson, L. Persson, N. Svanstedt and J. Wyller, The Homogenization Method: An Introduction, Studentlitteratur, Lund, 1993.Google Scholar
  48. 48.
    P. Ponte Castañeda, A second-order theory for nonlinear composite materials, C. R. Acad. Sci. Paris, t. 322, Série II b, (1996), 3–10.MATHGoogle Scholar
  49. 49.
    P. Ponte Castañeda, New variational principle and its application to nonlinear heterogeneous systems, SIAM J. Appl. Math. 52 (1992), 1321–1341.MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    E. Sanches-Palencia, Nonhomogeneous Media and Vibration Theory, Lecture Notes in Physics 127, Springer, Berlin, 1980.Google Scholar
  51. 51.
    L. Tartar, Estimation de coefficients homogeneises, Lecture Notes in Mathematics 704 (1979), Springer, Berlin, 364–373.Google Scholar
  52. 53.
    J.R. Willis, BVO Fields and bounds for nonlinear composite response, in: Proc. of the Second Workshop on Composite Media and Homogenization Theory, G. Dal Maso and G. Dell’Antonio, eds, World Scientific, Singapore, 1995.Google Scholar
  53. 54.
    W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987.MATHGoogle Scholar
  54. 55.
    W.P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, Berlin, 1989.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dag Lukkassen
    • 1
  • Annette Meidell
    • 2
  • Lars-Erik Persson
    • 3
  1. 1.Narvik University College, and Norut NarvikNarvikNorway
  2. 2.Narvik University CollegeNarvikNorway
  3. 3.Department of MathematicsLulea UniversityLuleaSweden

Personalised recommendations