Skip to main content

Application of a Vector-Valued Ekeland-Type Variational Principle for Deriving Optimality Conditions

  • Chapter
  • First Online:

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 35))

Abstract

In order to show necessary conditions for approximate solutions of vector-valued optimization problems in general spaces, we introduce an axiomatic approach for a scalarization scheme. Several examples illustrate this scalarization scheme. Using an Ekeland-type variational principle by Isac [12] and suitable scalarization techniques, we prove the optimality conditions under different assumptions concerning the ordering cone and under certain differentiability assumptions for the objective function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artzner, P., Delbean, F., Eber, J.-M. and Heath, D., 1999, Coherent measures of risk. Math. Finance, 9 (3) , 203–228.

    Article  MATH  MathSciNet  Google Scholar 

  2. Borwein, J.M., 1982, Continuity and Differentiability Properties of Convex Operators, Proc. London Math. Soc., 44, 420–444.

    Article  MATH  MathSciNet  Google Scholar 

  3. Clarke, F. H., 1983 Optimization and Nonsmooth Analysis, Wiley Interscience, New York.

    MATH  Google Scholar 

  4. Da Silva, A.R., 1987, Evaluation functionals are the extreme points of a basis for the dual of C +1 [a,b]. In: Jahn, J. and Krabs, W.: Recent Advances and Historical Development of Vector Optimization, Lecture Notes in Economics and Mathematical Systems, Springer, Berlin, 294, 86–95.

    Google Scholar 

  5. Durea, M., Tammer, C., 2009,Fuzzy necessary optimality conditions for vector optimization problems, Reports of the Institute for Mathematics, Martin-Luther-University Halle-Wittenberg, Report 08. To appear in Optimization 58, 449–467.

    Google Scholar 

  6. Dutta, J. and Tammer, Chr., 2006, Lagrangian conditions for vector optimization in Banach spaces. Mathematical Methods of Operations Research, 64, 521–541.

    Article  MATH  MathSciNet  Google Scholar 

  7. Föllmer, H., Schied, A., 2004, Stochastic Finance. Walter de Gruyter, Berlin.

    Book  MATH  Google Scholar 

  8. Gerth, C., and Weidner, P., 1990, Nonconvex Separation Theorems and Some Applications in Vector Optimization. Journal of Optimization Theory and Applications, 67, 2, 297–320.

    Article  MATH  MathSciNet  Google Scholar 

  9. Gæpfert, A., Riahi, H., Tammer, Chr. and Zălinescu, C., 2003, Variational Methods in Partially Ordered Spaces, Springer, New York.

    Google Scholar 

  10. Heyde, F., 2006, Coherent risk measures and vector optimization. In: Küfer, K.-H., Rommelfanger, H., Tammer, Chr., Winkler, K. Multicriteria Decision Making and Fuzzy Systems, SHAKER Verlag, 3–12; Reports of the Institute of Optimization and Stochastics, Martin-Luther-University Halle-Wittenberg, No. 19 (2004), 23–29.

    Google Scholar 

  11. Isac, G., 1983, Sur l’existence de l’optimum de Pareto, Riv. Mat. Univ. Parma (4) 9, 303–325.

    MathSciNet  Google Scholar 

  12. Isac, G., 1996, The Ekeland’s principle and the Pareto ε-efficiency, Multiobjective Programming and Goal Programming: Theories and applications (M. Tamiez ed.) Lecture Notes in Economics and Mathematical Systems, Springer, Berlin, 432, 148–163.

    Google Scholar 

  13. Isac, G., 2004, Nuclear cones in product spaces, Pareto efficiency and Ekeland-type variational principles in locally convex spaces, Optimization, 53, 3, 253–268.

    Article  MATH  MathSciNet  Google Scholar 

  14. Isac, G., Bulavsky, A.V., Kalashnikov, V.V., 2002, Complementarity, Equilibrium, Efficiency and Economics. Kluwer Academic Publishers, Dordrecht.

    MATH  Google Scholar 

  15. J.-B. Hiriart-Urruty, 1979, Tangent cones, generalized gradients and mathematical programmming in Banach spaces, Math. Oper. Res., 4, 79–97.

    Article  MATH  MathSciNet  Google Scholar 

  16. Hyers, D. H., and Isac, G., and Rassias, T. M., 1997, Topics in Nonlinear Analysis and Applications, World Scientific, Singapore.

    Book  MATH  Google Scholar 

  17. Jahn, J., 2004, Vector Optimization. Theory, Applications, and Extensions. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  18. B. S. Mordukhovich and Y. Shao, 1996, Nonsmooth sequential analysis in Asplund spaces, Transactions of American Mathematical Society, 348, 1235–1280.

    Article  MATH  MathSciNet  Google Scholar 

  19. Nemeth, A.B., 2004, Ordered uniform spaces and variational problems, Italian Journal of Pure and Applied Mathematics, 16, 183–192.

    MATH  MathSciNet  Google Scholar 

  20. Ng, K. F. and Zheng, X. Y., 2005, The Fermat rule for multifunctions on Banach spaces. Mathematical Programming, Ser. A, 104, 69–90.

    Article  MATH  MathSciNet  Google Scholar 

  21. Pascoletti, A. and Serafini, P., 1984, Scalarizing Vector Optimization Problems. J. Opt. Theory Appl., 42, 499–524.

    Article  MATH  MathSciNet  Google Scholar 

  22. Peressini, A.L., 1967, Ordered Topological Vector Space, Harper and Row, New York.

    Google Scholar 

  23. Phelps, R.R., 1993, Convex Functions, Monotone Operators and Differentiability (2nd ed.). Lect. Notes Math., 1364, Springer, Berlin.

    MATH  Google Scholar 

  24. Rockafellar, R. T., Uryasev, S. and Zabarankin, M., 2006, Deviation measures in risk analysis and optimization, Finance Stochastics, 10, 51–74.

    Article  MATH  MathSciNet  Google Scholar 

  25. Schaefer, H.H., 1986, Topological Vector Spaces, Springer-Verlag, Berlin.

    Google Scholar 

  26. Staib, T., 1989, Notwendige Optimalitätsbedingungen in der mehrkriteriellen Optimierung mit Anwendung auf Steuerungsprobleme, Friedrich-Alexander-Universität Erlangen-Nürnberg.

    Google Scholar 

  27. Tammer, Chr., 1994, A Variational Principle and a Fixed Point Theorem, System Modelling and Optimization, Henry, J., and Yven, J.-P., 197, Lecture Notes in Control and Informatics Sciences, Springer, Berlin, 248–257.

    Chapter  Google Scholar 

  28. Turinici, M., 1981, Maximality Principles and Mean-Value Theorems, Anais Acad. Brasil. Ciencias 53, 653–655.

    MATH  MathSciNet  Google Scholar 

  29. A. Zaffaroni, 2003, Degrees of efficiency and degrees of minimality, SIAM Journal on Control and Optimization, 42, 1071–1086.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of Professor George Isac

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Isac, G., Tammer, C. (2010). Application of a Vector-Valued Ekeland-Type Variational Principle for Deriving Optimality Conditions. In: Pardalos, P., Rassias, T., Khan, A. (eds) Nonlinear Analysis and Variational Problems. Springer Optimization and Its Applications, vol 35. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0158-3_23

Download citation

Publish with us

Policies and ethics