Skip to main content

Fixed Points and Stability of Functional Equations

  • Chapter
  • First Online:
  • 1248 Accesses

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 35))

Abstract

Using the fixed point method, we prove the generalized Hyers–Ulam stability of the functional equation \(f(x+y) + \frac{1}{2}f(x-y) + \frac{1}{2}f(y-x) = \frac{3}{2}f(x) + \frac{3}{2}f(y) +\frac{1}{2}f(-x) +\frac{1}{2} f(-y)\) in real Banach spaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64–66.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Cădariu and V. Radu, Fixed points and the stability of Jensen’s functional equation, J. Inequal. Pure Appl. Math. 4, no. 1, Art. ID 4 (2003), 1–7.

    Google Scholar 

  3. L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber. 346 (2004), 43–52.

    MATH  Google Scholar 

  4. L. Cădariu and V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Applications 2008, Art. ID 749392 (2008), 1–15.

    Google Scholar 

  5. P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76–86.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59–64.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Co., Singapore, 2002.

    Book  MATH  Google Scholar 

  8. J. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305–309.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436.

    Article  MATH  MathSciNet  Google Scholar 

  10. D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.

    Article  MathSciNet  Google Scholar 

  11. D.H. Hyers, G. Isac and Th.M. Rassias, Topics in Nonlinear Analysis and Applications, World Scientific Publishing Co., Singapore, 1997.

    Book  MATH  Google Scholar 

  12. D.H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.

    MATH  Google Scholar 

  13. D.H. Hyers and Th.M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125–153.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Isac and Th.M. Rassias, Stability of ψ-additive mappings: Applications to nonlinear analysis, Int. J. Math. Math. Sci. 19 (1996), 219–228.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press Inc., Palm Harbor, FL, 2001.

    MATH  Google Scholar 

  16. S. Jung, A fixed point approach to the stability of isometries, J. Math. Anal. Appl. 329 (2007), 879–890.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Mirzavaziri and M.S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc. 37 (2006), 361–376.

    Article  MATH  MathSciNet  Google Scholar 

  18. M.S. Moslehian and Th.M. Rassias, Stability of functional equations in non-Archimedian spaces, Appl. Anal. Disc. Math. 1 (2007), 325–334.

    Article  MATH  MathSciNet  Google Scholar 

  19. C. Park, Homomorphisms between Poisson JC * -algebras, Bull. Braz. Math. Soc. 36 (2005), 79–97.

    Article  MATH  MathSciNet  Google Scholar 

  20. C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory and Applications 2007, Art. ID 50175 (2007), 1–15.

    Google Scholar 

  21. C. Park, Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach, Fixed Point Theory and Applications 2008, Art. ID 493751 (2008), 1–9.

    Google Scholar 

  22. C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordan-von Neumann type additive functional equations, J. Inequal. Appl. 2007, Art. ID 41820 (2007), 1–13.

    Google Scholar 

  23. C. Park and J. Cui, Generalized stability of C * -ternary quadratic mappings, Abstract Appl. Anal. 2007, Art. ID 23282 (2007), 1–6.

    Google Scholar 

  24. C. Park and A. Najati, Homomorphisms and derivations in C * -algebras, Abstract Appl. Anal. 2007, Art. ID 80630 (2007), 1–12.

    Google Scholar 

  25. V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91–96.

    MATH  MathSciNet  Google Scholar 

  26. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.

    MATH  MathSciNet  Google Scholar 

  27. Th.M. Rassias, New characterizations of inner product spaces, Bull. Sci. Math. 108 (1984), 95–99.

    MATH  MathSciNet  Google Scholar 

  28. Th.M. Rassias, Problem 16; 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math. 39 (1990), 292–293; 309.

    Google Scholar 

  29. Th.M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai XLIII (1998), 89–124.

    MathSciNet  Google Scholar 

  30. Th.M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352–378.

    Article  MATH  MathSciNet  Google Scholar 

  31. Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264–284.

    Article  MATH  MathSciNet  Google Scholar 

  32. Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23–130.

    Article  MATH  MathSciNet  Google Scholar 

  33. Th.M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325–338.

    Article  MATH  MathSciNet  Google Scholar 

  34. Th.M. Rassias and K. Shibata, Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl. 228 (1998), 234–253.

    Article  MATH  MathSciNet  Google Scholar 

  35. F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129.

    Article  MATH  MathSciNet  Google Scholar 

  36. S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choonkil Park .

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of Professor George Isac

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Park, C., Rassias, T.M. (2010). Fixed Points and Stability of Functional Equations. In: Pardalos, P., Rassias, T., Khan, A. (eds) Nonlinear Analysis and Variational Problems. Springer Optimization and Its Applications, vol 35. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0158-3_11

Download citation

Publish with us

Policies and ethics