Multiuser MIMO Systems Using Space–Time–Frequency Multiple-Access PARAFAC Tensor Modeling

Chapter

Several existing signal processing problems in wireless communication systems with multiple transmit and/or receive antennas are modeled by means of matrix decompositions that represent the transformations on the transmitted signal from the transmitter to the receiver. At the receiver, signal processing is generally used to combat multipath fading effects, inter-symbol interference, and multiuser (co-channel) interference by means of multiple receive antennas. The usually considered signal processing dimensions are space and time dimensions [65]. This area has progressed over the past 20 years and has resulted in several powerful solutions. In order to allow for a higher spectral efficiency, numerous works have proposed blind signal processing techniques, which aim at avoiding the loss of bandwidth due to the use of training sequences.

Keywords

Microwave Azine Turkey Triad Tral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ITU-R recommendation M.1225. Guidelines for Evaluation of Radio Transmission Technologies for IMT-2000 (1997)Google Scholar
  2. 2.
    Agrawal, D., Tarokh, V., Naguib, A., Seshadri, N.: Space-time coded OFDM for high data-rate wireless communications over wideband channels. In: Proc. of Vehic. Tech. Conf., pp. 2232–2236. Ottawa, Canada (1998)Google Scholar
  3. 3.
    Alamouti, S.: A simple transmit diversity technique for wireless communications. IEEE J. Sel. Areas Commun. 16(8), 1451–1458 (1998)CrossRefGoogle Scholar
  4. 4.
    de Almeida, A.L.F.: Tensor modeling and signal processing for wireless communication systems. Ph.D. thesis, University of Nice, Sophia-Antipolis (2008)Google Scholar
  5. 5.
    de Almeida, A.L.F., Favier, G., Mota, J.C.M.: PARAFAC models for wireless communication systems. In: Int. Conf. on Physics in Signal and Image processing (PSIP). Toulouse, France (2005)Google Scholar
  6. 6.
    de Almeida, A.L.F., Favier, G., Mota, J.C.M.: Space-time multiplexing codes: A tensor modeling pproach. In: IEEE 7th Workshop on Sig. Proc. Advances in Wireless Commun. (SPAWC). Cannes, France (2006)Google Scholar
  7. 7.
    de Almeida, A.L.F., Favier, G., Mota, J.C.M.: Tensor-based space-time multiplexing codes for MIMO-OFDM systems with blind detection. In: Proc. IEEE Symp. Pers. Ind. Mob. Radio Commun. (PIMRC). Helsinki, Finland (2006)Google Scholar
  8. 8.
    de Almeida, A.L.F., Favier, G., Mota, J.C.M.: Constrained space-time spreading for MIMO-CDMA systems: Tensor modeling and blind detection. In: European Signal Process. Conf. (EUSIPCO). Poznan, Poland (2007)Google Scholar
  9. 9.
    de Almeida, A.L.F., Favier, G., Mota, J.C.M.: PARAFAC-based unified tensor modeling for wireless communication systems with application to blind multiuser equalization. Signal Processing 87(2), 337–351 (2007)CrossRefGoogle Scholar
  10. 10.
    de Almeida, A.L.F., Favier, G., Mota, J.C.M.: Space-time spreading MIMO system using canonical precoding tensor model. In: Asilomar Conference Sig. Syst. Comp. Pacific Grove, CA (2007)Google Scholar
  11. 11.
    de Almeida, A.L.F., Favier, G., Mota, J.C.M.: A constrained factor decomposition with application to MIMO antenna systems. IEEE Trans. on Signal Process. 56(6), 2429–2442 (2008)CrossRefGoogle Scholar
  12. 12.
    de Almeida, A.L.F., Favier, G., Mota, J.C.M.: Constrained tensor modeling approach to blind multiple-antenna CDMA schemes. IEEE Trans. on Signal Process. 56(6), 2417–2428 (2008)CrossRefGoogle Scholar
  13. 13.
    de Almeida, A.L.F., Favier, G., Mota, J.C.M.: Multiuser MIMO system using block space-time spreading and tensor modeling. Elsevier Signal Processing 88(10), 2388–2402 (2008)MATHGoogle Scholar
  14. 14.
    de Baynast, A., De Lathauwer, L.: Détection autodidacte pour des systèmes à accès multiple basée sur l’analyse PARAFAC. In: Proc. of XIX GRETSI Symp. Sig. Image Proc. Paris, France (2003)Google Scholar
  15. 15.
    de Baynast, A., De Lathauwer, L., Aazhang, B.: Blind PARAFAC receivers for multiple access-multiple antenna systems. In: Proc. VTC Fall. Orlando, USA (2003)Google Scholar
  16. 16.
    Bolcskei, H., Paulraj, A.: Space-frequency coded broadband OFDM systems. In: Proc. of Wirel. Comm. Networking Conf., pp. 1–6. Chicago, IL (2000)Google Scholar
  17. 17.
    Bro, R.: PARAFAC: Tutorial and applications. Chemometrics Intell. Lab. Syst. 38, 149–171 (1997)CrossRefGoogle Scholar
  18. 18.
    Bro, R.: Multi-way analysis in the food industry: Models, algorithms and applications. Ph.D. thesis, University of Amsterdam, Amsterdam (1998)Google Scholar
  19. 19.
    Cai, X., Zhou, S., Giannakis, G.B.: Group-orthogonal multicarrier CDMA. IEEE Trans. on Commun. 52, 90–99 (2004)CrossRefGoogle Scholar
  20. 20.
    Cardoso, J.F.: Blind signal separation: Statistical principles. In: Proc. of the IEEE, vol. 9, pp. 2009–2025 (1998)Google Scholar
  21. 21.
    Carroll, J.D., Chang, J.: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart–Young” decomposition. Psychometrika 35(3), 283–319 (1970)MATHCrossRefGoogle Scholar
  22. 22.
    Comon, P.: Blind identification and source separation in 2x3 under-determined mixtures. IEEE Trans. on Signal Process. 52(1), 11–22 (2004)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Damen, M.O., Abed-Meraim, K., Safavi, A.: On CDMA with space-time codes over multi-path fading channels. IEEE Trans. on Wireless Commun. 2(1), 11–19 (2003)CrossRefGoogle Scholar
  24. 24.
    DaSilva, V.M., Sousa, E.S.: Multicarrier orthogonal CDMA signals for quasi-synchronous communication systems. IEEE J. Sel. Areas Commun. 12(5), 842–852 (1994)CrossRefGoogle Scholar
  25. 25.
    De Lathauwer, L.: A link between the Canonical Decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J. Matrix Anal. Appl. 28(3), 642–666 (2006)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    De Lathauwer, L., Castaing, J.: Tensor-based techniques for the blind separation of DS-CDMA signals. Signal Processing 87(2), 322–336 (2007)CrossRefGoogle Scholar
  27. 27.
    Doostnejad, R., Lim, T.J., Sousa, E.: Space-time spreading codes for a multiuser MIMO system. In: Proc. of 36th Asilomar Conf. Signals, Syst. Comp., pp. 1374–1378. Pacific Grove, USA (2002)Google Scholar
  28. 28.
    Doostnejad, R., Lim, T.J., Sousa, E.: Space-time multiplexing for MIMO multiuser downlink channels. IEEE Trans. on Wireless Commun. 5(7), 1726–1734 (2006)CrossRefGoogle Scholar
  29. 29.
    Doostnejad, R., Lim, T.J., Sousa, E.S.: On spreading codes for the down-link in a multiuser MIMO-OFDM system. In: Proc. of IEEE Vehic. Tech. Conf., vol. 1, pp. 498–502. Orlando, FL (2003)Google Scholar
  30. 30.
    El Gamal, H., Damen, M.O.: Universal space-time coding. IEEE Trans. on Inf. Theory 49(5), 1097–1119 (2003)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Fazel, K., Kaiser, S., Schnell, M.: A flexible and high performance cellular mobile communications system based on orthogonal multi-carrier SSMA. Wireless Pers. Commun. 2(1/2), 121–144 (1995)CrossRefGoogle Scholar
  32. 32.
    Fernandes, C.A.R., Favier, G., Mota, J.C.M.: Blind tensor-based identification of memoryless multiuser Volterra channels using SOS and modulation codes. In: European Signal Process. Conf. (EUSIPCO). Poznan, Poland (2007)Google Scholar
  33. 33.
    Fernandes, C.E.R., Favier, G., Mota, J.C.M.: Tensor-based blind channel identification. In: IEEE Int. Conf. on Commun. (ICC). Glasgow, UK (2007)Google Scholar
  34. 34.
    Fernandes, C.E.R., Favier, G., Mota, J.C.M.: Blind channel identification algorithms based on the Parafac decomposition of cumulant tensors: The single and multiuser cases. Elsevier Signal Processing 88, 1382–1401 (2008)Google Scholar
  35. 35.
    Foschini, G.J.: Layered space-time architecture for wireless communications in a fading environment when using multiple antennas. Bell Labs Tech. J. 1(2), 41–59 (1996)CrossRefGoogle Scholar
  36. 36.
    Foschini, G.J., Gans, M.J.: On limits of wireless communications when using multiple antennas. Wireless Pers. Commun. 6(3), 311–335 (1998)CrossRefGoogle Scholar
  37. 37.
    Giannakis, G.B., Wang, Z., Scaglione, A., Barbarossa, S.: AMOUR-generalized multicarrier transceivers for blind CDMA regardless of multipath. IEEE Trans. on Communications 48(12), 2064–2076 (2000)CrossRefGoogle Scholar
  38. 38.
    Goldsmith, A., Jafar, S.A., Jindal, N., Vishwanath, S.: Capacity limits of MIMO channels. IEEE J. Sel. Areas Commun. 21(5), 684–702 (2003)CrossRefGoogle Scholar
  39. 39.
    Golub, G., van Loan, C.: Matrix Computations. The Johns Hopkins University Press, London, UK (1996)MATHGoogle Scholar
  40. 40.
    Harshman, R.A.: Foundations of the PARAFAC procedure: Model and conditions for an “explanatory” multi-mode factor analysis. UCLA Working Papers in Phonetics 16, 1–84 (1970)Google Scholar
  41. 41.
    Harshman, R.A., Lundy, M.E.: The PARAFAC Model for Three-Way Factor Analysis and Multidimensional Scaling. H. G. Law, C. W. Snyder Jr., J. Hattie, and R. P. McDonald, Eds. Praeger, New York (1984)Google Scholar
  42. 42.
    Hassibi, B., Hochwald, B.M.: High-rate codes that are linear in space and time. IEEE Trans. on Inf. Theory 48(7), 1804–1824 (2002)MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Hochwald, B., Marzetta, T.L., Papadias, C.B.: A transmitter diversity scheme for wideband CDMA systems based on space-time spreading. IEEE J. Sel. Areas Commun. 19(1), 48–60 (2001)CrossRefGoogle Scholar
  44. 44.
    Huang, H., Viswanathan, H., Foschini, G.J.: Multiple antennas in cellular CDMA systems: Transmission, detection, and spectral efficiency. IEEE Trans. on Wireless Commun. 1(3), 383–392 (2002)CrossRefGoogle Scholar
  45. 45.
    Jiang, T., Sidiropoulos, N.D.: A direct semi-blind receiver for SIMO and MIMO OFDM systems subject to frequency offset. In: Proc. SPAWC. Rome, Italy (2003)Google Scholar
  46. 46.
    Jiang, T., Sidiropoulos, N.D.: Kruskal’s permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints. IEEE Trans. on Signal Process. 52, 2625–2636 (2004)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Khouaja, A., Favier, G.: Identification of PARAFAC-Volterra cubic models using an alternating recursive least squares algorithm. In: European Signal Process. Conf. (EUSIPCO). Vienna, Austria (2004)Google Scholar
  48. 48.
    Khouaja, A., Kibangou, A.Y., Favier, G.: Third-order Volterra kernels complexity reduction using PARAFAC. In: First Int. Symp. on Control, Commun. and Signal Process. (ISCCSP), pp. 857–860. Hammamet, Tunisia (2004)CrossRefGoogle Scholar
  49. 49.
    Kibangou, A., Favier, G.: Identification aveugle de canaux de communication non linéaires basée sur la décomposition PARAFAC. In: GRETSI Symp. on Signal and Image Process. Troyes, France (2007)Google Scholar
  50. 50.
    Kibangou, A., Favier, G.: Blind equalization of nonlinear channels using a tensor decomposition with code/space/time diversities. Elsevier Signal Processing (2008)Google Scholar
  51. 51.
    Kibangou, A., Favier, G., Hassani, M.M.: Récepteur aveugle basé sur la décomposition PARAFAC pour des canaux de communication non-linéaires. In: Proc. GRETSI, pp. 177–180. Louvain-la-neuve, Belgium (2005)Google Scholar
  52. 52.
    Kruskal, J.B.: Three-way arrays: Rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics. Linear Algebra Appl. 18, 95–138 (1977)MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Liu, Z., Xin, Y., Giannakis, G.: Linear constellation precoding for ofdm with maximum multipath diversity and coding gains. IEEE Trans. on Commun. 51(3), 416–427 (2003). doi10.1109/TCOMM.2003.809791Google Scholar
  54. 54.
    Mailaender, L.: Linear MIMO equalization for CDMA downlink signals with code reuse. IEEE Trans. on Wireless Commun. 4(5), 2423–2434 (2005)CrossRefGoogle Scholar
  55. 55.
    Mudulodu, S., Paulraj, A.J.: A simple multiplexing scheme for MIMO systems using multiple spreading codes. In: Proc. 34th ASILOMAR Conf. on Signals, Systems and Computers, vol. 1, pp. 769–774. Pacific Grove, USA (2000)Google Scholar
  56. 56.
    van Nee, R.D., Prasad, R.: OFDM for Wireless Multimedia Communications. Artech House (2000)Google Scholar
  57. 57.
    Ng, B.K., Sousa, E.S.: Multicarrier spread space-spectrum multiple access for the MIMO forward link transmission. In: Proc. IEEE Int. Symp. Pers. Ind. Mob. Radio Commun. (PIMRC). Lisbon, Portugal (2002)Google Scholar
  58. 58.
    Ng, B.K., Sousa, E.S.: A novel spread space-spectrum multiple access scheme for the forward link. In: Proc. IEEE WCNC’02. Orlando, FL, USA (2002)Google Scholar
  59. 59.
    Ng, B.K., Sousa, E.S.: SSSMA for multiuser MIMO systems. IEEE Microwave Magazine pp. 1527–3342 (2004)Google Scholar
  60. 60.
    Nion, D., De Lathauwer, L.: A block factor analysis based receiver for blind multi-user access in wireless communications. In: Proc. ICASSP. Toulouse, France (2006)Google Scholar
  61. 61.
    Nion, D., De Lathauwer, L.: Levenberg–Marquadt computation of the block factor model for blind multi-user access in wireless communications. In: European Signal Process. Conf. (EUSIPCO). Florence, Italy (2006)Google Scholar
  62. 62.
    Nion, D., De Lathauwer, L.: Line search computation of the block factor model for blind multi-user access in wireless communications. In: IEEE 7th Workshop on Sig. Proc. Advances in Wireless Commun. (SPAWC). Cannes, France (2006)Google Scholar
  63. 63.
    Paulraj, A., Nabar, R., Gore, D.: Introduction to Space-Time Wireless Communications. Cambridge University Press, Cambridge, UK (2003)Google Scholar
  64. 64.
    Paulraj, A.J., Gore, D.A., Nabar, R.U., Bolcskei, H.: An overview of MIMO communications: A key to gigabit wireless. Proc. of IEEE 92(2), 198–218 (2004)CrossRefGoogle Scholar
  65. 65.
    Paulraj, A.J., Papadias, C.B.: Space-time processing for wireless communications. IEEE Signal Process. Magazine 14(6), 49–83 (1997)CrossRefGoogle Scholar
  66. 66.
    Petré, F., Leus, G., Moonen, M., De Man, H.: Multi-carrier block-spread CDMA for broadband cellular downlink. EURASIP J. Appl. Signal Process. (10), 1568–1584 (2004)Google Scholar
  67. 67.
    Prasad, R., Hara, S.: Overview of multicarrier CDMA. IEEE Commun. Magazine pp. 126–133 (1997)Google Scholar
  68. 68.
    Proakis, J.G.: Digital Communications. McGraw-Hill, New York (2001)Google Scholar
  69. 69.
    Rajih, M., Comon, P.: Enhanced line search: A novel method to accelerate PARAFAC. In: Proc. EUSIPCO. Antalya, Turkey (2005)Google Scholar
  70. 70.
    Rajih, M., Comon, P.: Alternating least squares identification of under-determined mixtures based on the characteristic function. In: ICASSP’06. Toulouse, France (2006)Google Scholar
  71. 71.
    Rong, Y., Vorobyov, S.A., Gershman, A.D., Sidiropoulos, N.D.: Blind spatial signature estimation via time-varying user power loading and parallel factor analysis. IEEE Trans. on Signal Process. 53(5), 1697–1710 (2005)CrossRefMathSciNetGoogle Scholar
  72. 72.
    Sfar, S., Murch, R.D., Letaief, K.B.: Layered space-time multiuser detection over wireless uplink systems. IEEE Trans. on Wireless Commun. 2(4), 653–668 (2003)CrossRefGoogle Scholar
  73. 73.
    Shao, L., Roy, S.: Rate-one space-frequency block codes with maximum diversity for MIMO-OFDM. IEEE Trans. on Wireless Commun. 4(4), 1674–1686 (2005)CrossRefGoogle Scholar
  74. 74.
    Sidiropoulos, N.D.: Low-rank decomposition of multi-way arrays: A signal processing perspective. In: Invited Plenary Lecture at IEEE SAM. Barcelona, Spain (2004)Google Scholar
  75. 75.
    Sidiropoulos, N.D., Bro, R., Giannakis, G.B.: Parallel factor analysis in sensor array processing. IEEE Trans. on Signal Process. 48(8), 2377–2388 (2000)CrossRefGoogle Scholar
  76. 76.
    Sidiropoulos, N.D., Budampati, R.: Khatri–Rao space-time codes. IEEE Trans. on Signal Process. 50(10), 2377–2388 (2002)MathSciNetGoogle Scholar
  77. 77.
    Sidiropoulos, N.D., Dimic, G.Z.: Blind multiuser detection in WCDMA systems with large delay spread. IEEE Signal Process. Lett. 8(3), 87–89 (2001)CrossRefGoogle Scholar
  78. 78.
    Sidiropoulos, N.D., Giannakis, G.B., Bro, R.: Blind PARAFAC receivers for DS-CDMA systems. IEEE Trans. on Signal Process. 48(3), 810–822 (2000)CrossRefGoogle Scholar
  79. 79.
    Sidiropoulos, N.D., Liu, X.: Cramer–Rao bounds for low-rank decomposition of multidimensional arrays. IEEE Trans. on Signal Process. 49(9), 2074–2086 (2001)CrossRefMathSciNetGoogle Scholar
  80. 80.
    Sidiropoulos, N.D., Liu, X.: Identifiability results for blind beamforming in incoherent multipath with small delay spread. IEEE Trans. on Signal Process. 49(1), 228–236 (2001)CrossRefGoogle Scholar
  81. 81.
    Smilde, A., Bro, R., Geladi, P.: Multi-Way Analysis. Applications in the Chemical Sciences. John Wiley and Sons, Chichester, UK (2004)CrossRefGoogle Scholar
  82. 82.
    Stegeman, A., Sidiropoulos, N.D.: On Kruskal’s uniqueness condition for the Candecomp/Parafac decomposition. Lin. Alg. Appl. 420, 540–552 (2007)MATHCrossRefMathSciNetGoogle Scholar
  83. 83.
    Stuber, G.R., Barry, J.R., Mclaughlin, S.W., Li, Y., Ingram, M.A., Pratt, T.G.: Broadband MIMO-OFDM wireless communications. Proc. of the IEEE 92(2), 271–294 (2004)CrossRefGoogle Scholar
  84. 84.
    Su, W., Safar, Z., Liu, K.J.R.: Full-rate full-diversity space-frequency codes with optimum coding advantage. IEEE Trans. Inf. Theory 51, 229–249 (2005)CrossRefMathSciNetGoogle Scholar
  85. 85.
    Su, W., Safar, Z., Liu, K.J.R.: Towards maximum achievable diversity in space, time and frequency: Performance analysis and code design. IEEE Trans. Commun. 4(4), 1847–1857 (2005)CrossRefGoogle Scholar
  86. 86.
    Talwar, S., Viberg, M., Paulraj, A.J.: Blind separation of synchronous co-channel digital signals using an antenna array – Part I: Algorithms. IEEE Trans. on Signal Process. 44(5), 1184–1197 (1996)CrossRefGoogle Scholar
  87. 87.
    Tarokh, V., Seshadri, N., Calderbank, A.R.: Space-time codes for high data rate wireless communications: Performance criterion and code construction. IEEE Trans. on Inf. Theory 44(2), 744–765 (1998)MATHCrossRefMathSciNetGoogle Scholar
  88. 88.
    Telatar, I.E.: Capacity of multi-antenna gaussian channels. European Trans. on Telecommun. 10(6), 585–595 (1999)CrossRefGoogle Scholar
  89. 89.
    Tran, N., Nguyen, H., Le-Ngoc, T.: Subcarrier grouping for ofdm with linear constellation precoding over multipath fading channels. IEEE Trans. on Vehic. Techn. 56(6), 3607–3613 (2007).CrossRefGoogle Scholar
  90. 90.
    Vanderdope, L.: Multitone spread spectrum multiple access communications system in a multipath rician fading channel. IEEE Trans. on Vehic. Techn. 44(2), 327–337 (1995)CrossRefGoogle Scholar
  91. 91.
    Vanderveen, M.C., Papadias, C.B., Paulraj, A.: Joint angle and delay estimation (JADE) for multipath signals arriving at an antenna array. IEEE Commun. Lett. 1(1), 12–14 (1997)CrossRefGoogle Scholar
  92. 92.
    Vanderveen, M.C., van der Veen, A.J., Paulraj, A.: Estimation of multipath parameters in wireless communications. IEEE Trans. on Signal Process. 46(3), 682–690 (1998)CrossRefGoogle Scholar
  93. 93.
    van der Veen, A.J.: Algebraic methods for deterministic blind beamforming. Proc. of IEEE 86(10), 1987–2008 (1998)CrossRefGoogle Scholar
  94. 94.
    van der Veen, A.J., Vanderveen, M.C., Paulraj, A.: Joint angle and delay estimation using shift invariance techniques. IEEE Trans. on Signal Process. 46(2), 405–418 (1998)CrossRefGoogle Scholar
  95. 95.
    Wang, Z., Giannakis, G.: Wireless multicarrier communications. IEEE Signal Process. Magazine 17(3), 29–48 (2000).CrossRefGoogle Scholar
  96. 96.
    Wang, Z., Giannakis, G.B.: Complex-field coding for OFDM over fading wireless channels. IEEE Trans. on Information Theory 49(3), 707–720 (2003)MATHCrossRefMathSciNetGoogle Scholar
  97. 97.
    Yang, L.L., Hanzo, L.: Broadband MC DS-CDMA using space-time and frequency-domain spreading. In: Proc. IEEE Vehic. Tech. Conf. (VTC Fall), pp. 1632–1636. Vancouver, Canada (2002)Google Scholar
  98. 98.
    Yang, L.L., Hua, W., Hanzo, L.: Multiuser detection assisted time- and frequency-domain spread multicarrier code-division multiple-access. IEEE Trans. on Vehic. Techn. 55(1), 397–405 (2006)CrossRefGoogle Scholar
  99. 99.
    Yee, N., Linnartz, J.P., Fettweis, G.: Multi-carrier CDMA in indoor wireless radio networks. In: Proc. IEEE Int. Symp. on Personal, Indoor, and Mobile Radio Commun. PIMRC, pp. 109–113. Yokohama, Japan (1993)Google Scholar
  100. 100.
    You, C.W., Hong, D.S.: Multicarrier CDMA systems using time-domain and frequency-domain spreading codes. IEEE Trans. on Commun. 51(1), 17–21 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  1. 1.Wireless Telecom Research Group (GTEL)FortalezaBrazil
  2. 2.Laboratoire I3S/UNSA/CNRSSophia AntipolisFrance

Personalised recommendations