Advertisement

Continuous Evolution of the Total Field

  • Kurt E. Oughstun
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 144)

Abstract

This chapter combines the results of the preceding two chapters in order to obtain the uniform asymptotic description of the total pulsed wavefield evolution in a given causally dispersive material. From the discussion given in Sect. 12.4, the propagated plane wavefield in either a single resonance Lorentz model dielectric [see (12.352)] or a Drude model conductor [see (12.356)] may be expressed either in the form

References

  1. 1.
    L. Brillouin, “Über die fortpflanzung des licht in disperdierenden medien,” Ann. Phys., vol. 44, pp. 204–240, 1914.Google Scholar
  2. 2.
    L. Brillouin, Wave Propagation and Group Velocity. New York: Academic, 1960.zbMATHGoogle Scholar
  3. 3.
    K. E. Oughstun, Propagation of Optical Pulses in Dispersive Media. PhD thesis, The Institute of Optics, University of Rochester, 1978.Google Scholar
  4. 4.
    K. E. Oughstun and G. C. Sherman, “Optical pulse propagation in temporally dispersive Lorentz media,” J. Opt. Soc. Am., vol. 65, no. 10, p. 1224A, 1975.Google Scholar
  5. 5.
    K. E. Oughstun and G. C. Sherman, “Comparison of the signal velocity of a pulse with the energy velocity of a time-harmonic field in Lorentz media,” in Proceedings of the URSI Symposium on Electromagnetic Wave Theory, (München), pp. C1–C5, 1980.Google Scholar
  6. 6.
    K. E. Oughstun and G. C. Sherman, “Propagation of electromagnetic pulses in a linear dispersive medium with absorption (the Lorentz medium),” J. Opt. Soc. Am. B, vol. 5, no. 4, pp. 817–849, 1988.ADSCrossRefGoogle Scholar
  7. 7.
    K. E. Oughstun and G. C. Sherman, “Uniform asymptotic description of electromagnetic pulse propagation in a linear dispersive medium with absorption (the Lorentz medium),” J. Opt. Soc. Am. A, vol. 6, no. 9, pp. 1394–1420, 1989.MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    K. E. Oughstun and G. C. Sherman, Pulse Propagation in Causal Dielectrics. Berlin: Springer-Verlag, 1994.Google Scholar
  9. 9.
    M. Born and E. Wolf, Principles of Optics. Cambridge: Cambridge University Press, seventh (expanded) ed., 1999.Google Scholar
  10. 10.
    H. Baerwald, “Über die fortpflanzung von signalen in disperdierenden medien,” Ann. Phys., vol. 7, pp. 731–760, 1930.CrossRefGoogle Scholar
  11. 11.
    S. Shen and K. E. Oughstun, “Dispersive pulse propagation in a double-resonance Lorentz medium,” J. Opt. Soc. Am. B, vol. 6, pp. 948–963, 1989.ADSCrossRefGoogle Scholar
  12. 12.
    K. E. Oughstun and N. A. Cartwright, “Dispersive pulse dynamics and associated pulse velocity measures,” Pure Appl. Opt., vol. 4, no. 5, pp. S125–S134, 2002.CrossRefGoogle Scholar
  13. 13.
    H. M. Nussenzveig, Causality and Dispersion Relations. New York: Academic, 1972. Chap. 1.Google Scholar
  14. 14.
    J. Jones, “On the propagation of a pulse through a dispersive medium,” Am. J. Physics, vol. 42, pp. 43–46, 1974.ADSCrossRefGoogle Scholar
  15. 15.
    R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” Phys. A, vol. 3, pp. 233–245, 1970.ADSCrossRefGoogle Scholar
  16. 16.
    S. L. McCall and E. L. Hahn, “Self-induced transparency,” Phys. Rev., vol. 183, pp. 457–485, 1969.ADSCrossRefGoogle Scholar
  17. 17.
    L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms. New York: Wiley, 1975.Google Scholar
  18. 18.
    R. L. Smith, “The velocities of light,” Am. J. Phys., vol. 38, no. 8, pp. 978–984, 1970.ADSCrossRefGoogle Scholar
  19. 19.
    A. Sommerfeld, “Über die fortpflanzung des lichtes in disperdierenden medien,” Ann. Phys., vol. 44, pp. 177–202, 1914.CrossRefGoogle Scholar
  20. 20.
    N. S. Shiren, “Measurement of signal velocity in a region of resonant absorption by ultrasonic paramagnetic resonance,” Phys. Rev., vol. 128, pp. 2103–2112, 1962.ADSCrossRefGoogle Scholar
  21. 21.
    T. A. Weber and D. B. Trizna, “Wave propagation in a dispersive and emissive medium,” Phys. Rev., vol. 144, pp. 277–282, 1966.ADSCrossRefGoogle Scholar
  22. 22.
    K. E. Oughstun, P. Wyns, and D. P. Foty, “Numerical determination of the signal velocity in dispersive pulse propagation,” J. Opt. Soc. Am. A, vol. 6, no. 9, pp. 1430–1440, 1989.ADSCrossRefGoogle Scholar
  23. 23.
    A. Karlsson and S. Rikte, “Time-domain theory of forerunners,” J. Opt. Soc. Am. A, vol. 15, no. 2, pp. 487–502, 1998.MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    S. He and S. Ström, “Time-domain wave splitting and propagation in dispersive media,” J. Opt. Soc. Am. A, vol. 13, no. 11, pp. 2200–2207, 1996.ADSCrossRefGoogle Scholar
  25. 25.
    P. Drude, Lehrbuch der Optik. Leipzig: Teubner, 1900. Chap. V.Google Scholar
  26. 26.
    M. A. Messier, “A standard ionosphere for the study of electromagnetic pulse propagation,” Tech. Rep. Note 117, Air Force Weapons Laboratory, Albuquerque, NM, 1971.Google Scholar
  27. 27.
    N. A. Cartwright and K. E. Oughstun, “Ultrawideband pulse penetration in an isotropic collisionless plasma,” in 2007 CNC/USNC North American Radio Science Meeting, 2007.Google Scholar
  28. 28.
    N. A. Cartwright and K. E. Oughstun, “Ultrawideband pulse propagation through a lossy plasma,” Radio Sci., vol. 43, pp. 1–23, 2008.Google Scholar
  29. 29.
    S. L. Dvorak, D. G. Dudley, and R. W. Ziolkowski, “Propagation of UWB electromagnetic pulses through lossy plasmas,” in Ultra-Wideband, Short-Pulse Electromagnetics 3 (C. Baum, L. Carin, and A. P. Stone, eds.), pp. 247–254, New York: Plenum, 1997.Google Scholar
  30. 30.
    S. L. Dvorak, R. W. Ziolkowski, and D. G. Dudley, “Ultra-wideband electromagnetic pulse propagation in a homogeneous, cold plasma,” Radio Sci., vol. 32, no. 1, pp. 239–250, 1997.ADSCrossRefGoogle Scholar
  31. 31.
    H. Xiao and K. E. Oughstun, “Hybrid numerical-asymptotic code for dispersive pulse propagation calculations,” J. Opt. Soc. Am. A, vol. 15, no. 5, pp. 1256–1267, 1998.ADSCrossRefGoogle Scholar
  32. 32.
    K. E. Oughstun, “Dynamical evolution of the Brillouin precursor in Rocard-Powles-Debye model dielectrics,” IEEE Trans. Ant. Prop., vol. 53, no. 5, pp. 1582–1590, 2005.MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    R. L. Veghte and C. A. Balanis, “Dispersion of transient signals in microstrip transmission lines,” IEEE Trans. Microwave Theory Tech., vol. 34, no. 12, pp. 1427–1436, 1986.ADSCrossRefGoogle Scholar
  34. 34.
    P. Pramanick and P. Bhartia, “An accurate description of dispersion in microstrip,” Microwave J., vol. 26, no. 12, pp. 89–96, 1983.Google Scholar
  35. 35.
    K. E. Oughstun and G. C. Sherman, “Uniform asymptotic description of ultrashort rectangular optical pulse propagation in a linear, causally dispersive medium,” Phys. Rev. A, vol. 41, no. 11, pp. 6090–6113, 1990.ADSCrossRefGoogle Scholar
  36. 36.
    R. S. Elliott, “Pulse waveform degradation due to dispersion in waveguide,” IRE Trans. Microwave Theory Tech., vol. 5, pp. 254–257, 1957.ADSCrossRefGoogle Scholar
  37. 37.
    R. D. Wanselow, “Rectangular pulse distortion due to a nonlinear complex transmission propagation constant,” J. Franklin Inst., vol. 274, pp. 178–184, 1962.CrossRefGoogle Scholar
  38. 38.
    C. M. Knop and G. I. Cohn, “Comments on pulse waveform degradation due to dispersion in waveguide,” IEEE Trans. Microwave Theory Tech., vol. 11, pp. 445–447, 1963.ADSCrossRefGoogle Scholar
  39. 39.
    C. M. Knop, “Pulsed electromagnetic wave propagation in dispersive media,” IEEE Trans. Antennas Prop., vol. 12, pp. 494–496, 1964.ADSCrossRefGoogle Scholar
  40. 40.
    J. R. Wait, “Propagation of pulses in dispersive media,” Radio Sci., vol. 69D, pp. 1387–1401, 1965.Google Scholar
  41. 41.
    C. T. Case and R. E. Haskell, “On pulsed electromagnetic wave propagation in dispersive media,” IEEE Trans. Antennas Prop., vol. 14, pp. 401, 1966.Google Scholar
  42. 42.
    R. E. Haskell and C. T. Case, “Transient signal propagation in lossless, isotropic plasmas,” IEEE Trans. Antennas Prop., vol. 15, pp. 458–464, 1967.ADSCrossRefGoogle Scholar
  43. 43.
    L. E. Vogler, “An exact solution for waveform distortion of arbitrary signals in ideal wave guides,” Radio Sci., vol. 5, pp. 1469–1474, 1970.ADSCrossRefGoogle Scholar
  44. 44.
    J. R. Wait, “Electromagnetic-pulse propagation in a simple dispersive medium,” Elect. Lett., vol. 7, pp. 285–286, 1971.CrossRefGoogle Scholar
  45. 45.
    R. Barakat, “Ultrashort optical pulse propagation in a dispersive medium,” J. Opt. Soc. Am. B, vol. 3, no. 11, pp. 1602–1604, 1986.MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    P. D. Smith, Energy Dissipation of Pulsed Electromagnetic Fields in Causally Dispersive Dielectrics. PhD thesis, University of Vermont, 1995. Reprinted in UVM Research Report CSEE/95/07-02 (July 18, 1995).Google Scholar
  47. 47.
    P. D. Smith and K. E. Oughstun, “Electromagnetic energy dissipation of ultra-wideband plane wave pulses in a causal, dispersive dielectric,” in Ultra-Wideband, Short-Pulse Electromagnetics 2 (L. Carin and L. B. Felsen, eds.), pp. 285–295, New York: Plenum, 1995.Google Scholar
  48. 48.
    P. D. Smith and K. E. Oughstun, “Electromagnetic energy dissipation and propagation of an ultrawideband plane wave pulse in a causally dispersive dielectric,” Radio Sci., vol. 33, no. 6, pp. 1489–1504, 1998.ADSCrossRefGoogle Scholar
  49. 49.
    P. D. Smith and K. E. Oughstun, “Ultrawideband electromagnetic pulse propagation in triply-distilled water,” in Ultra-Wideband, Short-Pulse Electromagnetics 4 (E. Heyman, B. Mandelbaum, and J. Shiloh, eds.), pp. 265–276, New York: Plenum, 1999.Google Scholar
  50. 50.
    H. T. Banks, M. W. Buksas, and T. Lin, Electromagnetic Material Interrogation Using Conductive Interfaces and Acoustic Wavefronts. Frontiers in Applied Mathematics, Philadelphia: Society for Industrial and Applied Mathematics, 2000.zbMATHCrossRefGoogle Scholar
  51. 51.
    J. A. Fuller and J. R. Wait, “A pulsed dipole in the earth,” in Transient Electromagnetic Fields (L. B. Felsen, ed.), pp. 237–269, New York: Springer-Verlag, 1976.Google Scholar
  52. 52.
    R. W. P. King and T. T. Wu, “The propagation of a radar pulse in sea water,” J. Appl. Phys., vol. 73, no. 4, pp. 1581–1590, 1993.ADSCrossRefGoogle Scholar
  53. 53.
    N. A. Cartwright and K. E. Oughstun, “Ultrawideband pulse penetration in a Debye medium with static conductivity,” in Fourth IASTED International Conference on Antennas, Radar, and Propagation, 2007.Google Scholar
  54. 54.
    K. E. Oughstun, “Noninstantaneous, finite rise-time effects on the precursor field formation in linear dispersive pulse propagation,” J. Opt. Soc. Am. A, vol. 12, pp. 1715–1729, 1995.ADSCrossRefGoogle Scholar
  55. 55.
    M. Tanaka, M. Fujiwara, and H. Ikegami, “Propagation of a Gaussian wave packet in an absorbing medium,” Phys. Rev. A, vol. 34, pp. 4851–4858, 1986.ADSCrossRefGoogle Scholar
  56. 56.
    C. M. Balictsis and K. E. Oughstun, “Uniform asymptotic description of ultrashort Gaussian pulse propagation in a causal, dispersive dielectric,” Phys. Rev. E, vol. 47, no. 5, pp. 3645–3669, 1993.ADSCrossRefGoogle Scholar
  57. 57.
    K. E. Oughstun and C. M. Balictsis, “Gaussian pulse propagation in a dispersive, absorbing dielectric,” Phys. Rev. Lett., vol. 77, no. 11, pp. 2210–2213, 1996.ADSCrossRefGoogle Scholar
  58. 58.
    C. M. Balictsis and K. E. Oughstun, “Generalized asymptotic description of the propagated field dynamics in Gaussian pulse propagation in a linear, causally dispersive medium,” Phys. Rev. E, vol. 55, no. 2, pp. 1910–1921, 1997.ADSCrossRefGoogle Scholar
  59. 59.
    K. E. Oughstun and H. Xiao, “Failure of the quasimonochromatic approximation for ultrashort pulse propagation in a dispersive, attenuative medium,” Phys. Rev. Lett., vol. 78, no. 4, pp. 642–645, 1997.ADSCrossRefGoogle Scholar
  60. 60.
    H. Xiao and K. E. Oughstun, “Failure of the group velocity description for ultrawideband pulse propagation in a double resonance Lorentz model dielectric,” J. Opt. Soc. Am. B, vol. 16, no. 10, pp. 1773–1785, 1999.ADSCrossRefGoogle Scholar
  61. 61.
    S. P. Sira, A. Papandreou-Suppappola, and D. Morrell, “Dynamic configuration of time-varying waveforms for agile sensing and tracking in clutter,” IEEE Trans. Signal Proc., vol. 55, no. 7, pp. 3207–3217, 2007.MathSciNetADSCrossRefGoogle Scholar
  62. 62.
    V. Mitlin, Performance Optimization of Digital Communications Systems. Boca-Raton: Auerbach, 2006. Sect. 4.9.Google Scholar
  63. 63.
    C. G. B. Garrett and D. E. McCumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A, vol. 1, pp. 305–313, 1970.ADSCrossRefGoogle Scholar
  64. 64.
    M. D. Crisp, “Concept of group velocity in resonant pulse propagation,” Phys. Rev. A, vol. 4, no. 5, pp. 2104–2108, 1971.ADSCrossRefGoogle Scholar
  65. 65.
    G. C. Sherman and K. E. Oughstun, “Description of pulse dynamics in Lorentz media in terms of the energy velocity and attenuation of time-harmonic waves,” Phys. Rev. Lett., vol. 47, pp. 1451–1454, 1981.ADSCrossRefGoogle Scholar
  66. 66.
    S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett., vol. 48, pp. 738–741, 1982.ADSCrossRefGoogle Scholar
  67. 67.
    G. C. Sherman and K. E. Oughstun, “Energy velocity description of pulse propagation in absorbing, dispersive dielectrics,” J. Opt. Soc. Am. B, vol. 12, pp. 229–247, 1995.ADSCrossRefGoogle Scholar
  68. 68.
    K. E. Oughstun and J. E. Laurens, “Asymptotic description of ultrashort electromagnetic pulse propagation in a linear, causally dispersive medium,” Radio Sci., vol. 26, no. 1, pp. 245–258, 1991.ADSCrossRefGoogle Scholar
  69. 69.
    C. M. Balictsis, Gaussian Pulse Propagation in a Causal, Dispersive Dielectric. PhD thesis, University of Vermont, 1993. Reprinted in UVM Research Report CSEE/93/12-06 (December 31, 1993).Google Scholar
  70. 70.
    C. M. Balictsis and K. E. Oughstun, “Uniform asymptotic description of Gaussian pulse propagation of arbitrary initial pulse width in a linear, causally dispersive medium,” in Ultra-Wideband, Short-Pulse Electromagnetics 2 (L. Carin and L. B. Felsen, eds.), pp. 273–283, New York: Plenum, 1994.Google Scholar
  71. 71.
    J. Peatross, S. A. Glasgow, and M. Ware, “Average energy flow of optical pulses in dispersive media,” Phys. Rev. Lett., vol. 84, no. 11, pp. 2370–2373, 2000.ADSCrossRefGoogle Scholar
  72. 72.
    M. Ware, S. A. Glasgow, and J. Peatross, “Role of group velocity in tracking field energy in linear dielectrics,” Opt. Exp., vol. 9, no. 10, pp. 506–518, 2001.ADSCrossRefGoogle Scholar
  73. 73.
    N. A. Cartwright and K. E. Oughstun, “Pulse centroid velocity of the Poynting vector,” J. Opt. Soc. Am. A, vol. 21, no. 3, pp. 439–450, 2004.MathSciNetADSCrossRefGoogle Scholar
  74. 74.
    P. Pleshko, Transients in Guiding Structures. PhD thesis, New York University, 1969.Google Scholar
  75. 75.
    P. Pleshko and I. Palócz, “Experimental observation of Sommerfeld and Brillouin precursors in the microwave domain,” Phys. Rev. Lett., vol. 22, pp. 1201–1204, 1969.ADSCrossRefGoogle Scholar
  76. 76.
    J. B. Gunn, “Bouncing ball pulse generator,” Electron. Lett., vol. 2, no. 5, pp. 172–173, 1966.CrossRefGoogle Scholar
  77. 77.
    E. D. Torre, Magnetic Hysteresis. New York: IEEE Press, 1999.Google Scholar
  78. 78.
    M. E. Brodwin and D. A. Miller, “Propagation of the quasi-TEM mode in ferrite-filled coaxial line,” IEEE Trans. Microwave Theory Tech., vol. 12, no. 9, pp. 496–503, 1964.ADSCrossRefGoogle Scholar
  79. 79.
    H. Suhl and L. R. Walker, “Topics in guided wave propagation through gyromagnetic media,” Bell Syst. Tech. J., vol. 33, no. 9, pp. 1133–1194, 1954.Google Scholar
  80. 80.
    D. D. Stancil, “Magnetostatic wave precursors in thin ferrite films,” J. Appl. Phys., vol. 53, no. 3, p. 2658, 1982.Google Scholar
  81. 81.
    D. D. Stancil, Theory of Magnetostatic Waves. New York: Springer, 1993.CrossRefGoogle Scholar
  82. 82.
    O. Avenel, M. Rouff, E. Varoquaux, and G. A. Williams, “Resonant pulse propagation of sound in superfluid 3 HeB,” Phys. Rev. Lett., vol. 50, no. 20, pp. 1591–1594, 1983.ADSCrossRefGoogle Scholar
  83. 83.
    E. Varoquaux, G. A. Williams, and O. Avenel, “Pulse propagation in a resonant medium: Application to sound waves in superfluid 3 HeB,” Phys. Rev. B, vol. 34, no. 11, pp. 7617–7640, 1986.ADSCrossRefGoogle Scholar
  84. 84.
    É. Falcon, C. Laroche, and S. Fauve, “Observation of Sommerfeld precursors on a fluid surface,” Phys. Rev. Lett., vol. 91, no. 6, pp. 064502–1–064502–4, 2003.Google Scholar
  85. 85.
    J. Aaviksoo, J. Lippmaa, and J. Kuhl, “Observability of optical precursors,” J. Opt. Soc. Am. B, vol. 5, no. 8, pp. 1631–1635, 1988.ADSCrossRefGoogle Scholar
  86. 86.
    J. Aaviksoo, J. Kuhl, and K. Ploog, “Observation of optical precursors at pulse propagation in GaAs,” Phys. Rev. A, vol. 44, no. 9, pp. 5353–5356, 1991.ADSCrossRefGoogle Scholar
  87. 87.
    J. L. Birman and M. J. Frankel, “Predicted new electromagnetic precursors and altered signal velocity in dispersive media,” Opt. Comm., vol. 13, no. 3, pp. 303–306, 1975.ADSCrossRefGoogle Scholar
  88. 88.
    M. J. Frankel and J. L. Birman, “Transient optical response of a spatially dispersive medium,” Phys. Rev. A, vol. 15, no. 5, pp. 2000–2008, 1977.ADSCrossRefGoogle Scholar
  89. 89.
    S.-H. Choi and U. Österberg, “Observation of optical precursors in water,” Phys. Rev. Lett., vol. 92, no. 19, pp. 1939031–1939033, 2004.CrossRefGoogle Scholar
  90. 90.
    R. R. Alfano, J. L. Birman, X. Ni, M. Alrubaiee, and B. B. Das, “Comment on ‘Observation of optical precursors in water’,” Phys. Rev. Lett., vol. 94, no. 23, p. 239401, 2005.Google Scholar
  91. 91.
    R. Albanese, J. Penn, and R. Medina, “Ultrashort pulse response in nonlinear dispersive media,” in Ultra-Wideband, Short-Pulse Electromagnetics (H. L. Bertoni, L. B. Felsen, and L. Carin, eds.), pp. 259–265, New York: Plenum, 1992.Google Scholar
  92. 92.
    Y. Okawachi, A. D. Slepkov, I. H. Agha, D. F. Geraghty, and A. L. Gaeta, “Absorption of ultrashort optical pulses in water,” J. Opt. Soc. Am. A, vol. 24, no. 10, pp. 3343–3347, 2007.ADSCrossRefGoogle Scholar
  93. 93.
    H. Jeong, A. M. C. Dawes, and D. J. Gauthier, “Direct observation of optical precursors in a region of anomalous dispersion,” Phys. Rev. Lett., vol. 96, no. 14, p. 143901, 2006.Google Scholar
  94. 94.
    Y. Park, M. H. Asghari, T. J. Ahn, and J. Azaña, “Transform-limited picosecond pulse shaping based on temporal coherence synthesization,” Opt. Express, vol. 15, no. 15, pp. 9584–9599, 2007.ADSCrossRefGoogle Scholar
  95. 95.
    R. Landauer, “Light faster than light?,” Nature, vol. 365, pp. 692–693, 1993.ADSCrossRefGoogle Scholar
  96. 96.
    G. Diener, “Superluminal group velocities and information transfer,” Phys. Lett. A, vol. 223, pp. 327–331, 1996.MathSciNetADSzbMATHCrossRefGoogle Scholar
  97. 97.
    A. Einstein, “Zur elektrodynamik bewegter körper,” Ann. Phys., vol. 17, pp. 891–921, 1905.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kurt E. Oughstun
    • 1
  1. 1.College of Engineering & Mathematical Sciences School of EngineeringUniversity of VermontBurlingtonUSA

Personalised recommendations