Skip to main content

Analysis of the Phase Function and Its Saddle Points

  • Chapter
Electromagnetic and Optical Pulse Propagation 2

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 144))

  • 1542 Accesses

Abstract

In preparation for the asymptotic analysis of the exact Fourier–Laplace integral representation given either in (11.45) as

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From the Greek isotimos, of equal worth.

  2. 2.

    Notice that these approximate expressions for the branch point zero locations are different from those given in an earlier paper [11].

  3. 3.

    Notice that the second approximate expression for η(θ) that is used here is slightly modified from that given in earlier publications [4, 6, 7].

  4. 4.

    Notice that this result is somewhat different from (and more accurate than) that given in [11].

  5. 5.

    This result is an extension of that given in [11].

  6. 6.

    Recall that it is assumed here that each of the spectral functions \(\tilde{f}\)(ω) and \(\tilde{u}\)(ω − ω c ) is an analytic function of the complex variable ω, regular in the entire complex ω-plane except at a countable number of isolated points where that function may exhibit poles.

  7. 7.

    Notice that Λ(θ) changes discontinuously with the space–time parameter θ as the path P(θ) crosses over each pole. However, each of these discontinuities is cancelled by a corresponding discontinuous change in I(z, θ).

  8. 8.

    If u(t) is bounded and tends to zero rapidly enough such that the Fourier transform of u(t) converges uniformly for all real ω, then \(\tilde{u}\)(ω − ω c ) is an entire function of complex ω.

References

  1. A. Sommerfeld, “Über die fortpflanzung des lichtes in disperdierenden medien,” Ann. Phys., vol. 44, pp. 177–202, 1914.

    Article  Google Scholar 

  2. L. Brillouin, “Über die fortpflanzung des licht in disperdierenden medien,” Ann. Phys., vol. 44, pp. 204–240, 1914.

    Google Scholar 

  3. L. Brillouin, Wave Propagation and Group Velocity. New York: Academic, 1960.

    MATH  Google Scholar 

  4. K. E. Oughstun, Propagation of Optical Pulses in Dispersive Media. PhD thesis, The Institute of Optics, University of Rochester, 1978.

    Google Scholar 

  5. K. E. Oughstun and G. C. Sherman, “Uniform asymptotic description of dispersive pulse propagation,” J. Opt. Soc. Am. A, vol. 69, no. 10, p. 1448A, 1979.

    Google Scholar 

  6. K. E. Oughstun and G. C. Sherman, “Propagation of electromagnetic pulses in a linear dispersive medium with absorption (the Lorentz medium),” J. Opt. Soc. Am. B, vol. 5, no. 4, pp. 817–849, 1988.

    Article  ADS  Google Scholar 

  7. K. E. Oughstun and G. C. Sherman, Pulse Propagation in Causal Dielectrics. Berlin: Springer, 1994.

    Google Scholar 

  8. H. M. Nussenzveig, Causality and Dispersion Relations. New York: Academic, 1972. Chap. 1.

    Google Scholar 

  9. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media. Oxford: Pergamon, 1960. Ch. IX.

    Google Scholar 

  10. K. E. Oughstun, “Dynamical evolution of the precursor fields in linear dispersive pulse propagation in lossy dielectrics,” in Ultra-Wideband, Short-Pulse Electromagnetics 2 (L. Carin and L. B. Felsen, eds.), pp. 257–272, New York: Plenum, 1994.

    Google Scholar 

  11. S. Shen and K. E. Oughstun, “Dispersive pulse propagation in a double-resonance Lorentz medium,” J. Opt. Soc. Am. B, vol. 6, pp. 948–963, 1989.

    Article  ADS  Google Scholar 

  12. J. E. K. Laurens and K. E. Oughstun, “Electromagnetic impulse response of triply-distilled water,” in Ultra-Wideband, Short-Pulse Electromagnetics 4 (E. Heyman, B. Mandelbaum, and J. Shiloh, eds.), pp. 243–264, New York: Plenum, 1999.

    Google Scholar 

  13. E. T. Whittaker and G. N. Watson, Modern Analysis. London: Cambridge University Press, fourth ed., 1963. p. 133.

    Google Scholar 

  14. K. E. Oughstun, “Dynamical evolution of the Brillouin precursor in Rocard-Powles-Debye model dielectrics,” IEEE Trans. Ant. Prop., vol. 53, no. 5, pp. 1582–1590, 2005.

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, “Superconvergence and sum rules for the optical constants,” Phys. Rev. B, vol. 6, pp. 4502–4509, 1972.

    Article  ADS  Google Scholar 

  16. H. Xiao and K. E. Oughstun, “Hybrid numerical-asymptotic code for dispersive pulse propagation calculations,” J. Opt. Soc. Am. A, vol. 15, no. 5, pp. 1256–1267, 1998.

    Article  ADS  Google Scholar 

  17. K. E. Oughstun, J. E. K. Laurens, and C. M. Balictsis, “Asymptotic description of electromagnetic pulse propagation in a linear dispersive medium,” in Ultra-Wideband, Short-Pulse Electromagnetics (H. L. Bertoni, L. B. Felsen, and L. Carin, eds.), pp. 223–240, New York: Plenum, 1992.

    Google Scholar 

  18. J. McConnel, Rotational Brownian Motion and Dielectric Theory. London: Academic, 1980.

    Google Scholar 

  19. P. Debye, Polar Molecules. New York: Dover, 1929.

    MATH  Google Scholar 

  20. J. E. K. Laurens, Plane Wave Pulse Propagation in a Linear, Causally Dispersive Polar Medium. PhD thesis, University of Vermont, 1993. Reprinted in UVM Research Report CSEE/93/05-02 (May 1, 1993).

    Google Scholar 

  21. M. A. Messier, “A standard ionosphere for the study of electromagnetic pulse propagation,” Tech. Rep. Note 117, Air Force Weapons Laboratory, Albuquerque, NM, 1971.

    Google Scholar 

  22. P. Drude, Lehrbuch der Optik. Leipzig: Teubner, 1900. Chap. V.

    Google Scholar 

  23. N. A. Cartwright and K. E. Oughstun, “Ultrawideband pulse penetration in an isotropic collisionless plasma,” in 2007 CNC/USNC North American Radio Science Meeting, 2007.

    Google Scholar 

  24. N. A. Cartwright and K. E. Oughstun, “Ultrawideband pulse penetration in a Debye medium with static conductivity,” in Fourth IASTED International Conference on Antennas, Radar, and Propagation, 2007.

    Google Scholar 

  25. E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable. London: Oxford University Press, 1935. Section 6.1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Oughstun, K.E. (2009). Analysis of the Phase Function and Its Saddle Points. In: Electromagnetic and Optical Pulse Propagation 2. Springer Series in Optical Sciences, vol 144. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0149-1_4

Download citation

Publish with us

Policies and ethics