Analysis of the Phase Function and Its Saddle Points

  • Kurt E. Oughstun
Part of the Springer Series in Optical Sciences book series (SSOS, volume 144)


In preparation for the asymptotic analysis of the exact Fourier–Laplace integral representation given either in (11.45) as


Saddle Point Branch Point Imaginary Axis Complex Index Saddle Point Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Sommerfeld, “Über die fortpflanzung des lichtes in disperdierenden medien,” Ann. Phys., vol. 44, pp. 177–202, 1914.CrossRefGoogle Scholar
  2. 2.
    L. Brillouin, “Über die fortpflanzung des licht in disperdierenden medien,” Ann. Phys., vol. 44, pp. 204–240, 1914.Google Scholar
  3. 3.
    L. Brillouin, Wave Propagation and Group Velocity. New York: Academic, 1960.zbMATHGoogle Scholar
  4. 4.
    K. E. Oughstun, Propagation of Optical Pulses in Dispersive Media. PhD thesis, The Institute of Optics, University of Rochester, 1978.Google Scholar
  5. 5.
    K. E. Oughstun and G. C. Sherman, “Uniform asymptotic description of dispersive pulse propagation,” J. Opt. Soc. Am. A, vol. 69, no. 10, p. 1448A, 1979.Google Scholar
  6. 6.
    K. E. Oughstun and G. C. Sherman, “Propagation of electromagnetic pulses in a linear dispersive medium with absorption (the Lorentz medium),” J. Opt. Soc. Am. B, vol. 5, no. 4, pp. 817–849, 1988.ADSCrossRefGoogle Scholar
  7. 7.
    K. E. Oughstun and G. C. Sherman, Pulse Propagation in Causal Dielectrics. Berlin: Springer, 1994.Google Scholar
  8. 8.
    H. M. Nussenzveig, Causality and Dispersion Relations. New York: Academic, 1972. Chap. 1.Google Scholar
  9. 9.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media. Oxford: Pergamon, 1960. Ch. IX.Google Scholar
  10. 10.
    K. E. Oughstun, “Dynamical evolution of the precursor fields in linear dispersive pulse propagation in lossy dielectrics,” in Ultra-Wideband, Short-Pulse Electromagnetics 2 (L. Carin and L. B. Felsen, eds.), pp. 257–272, New York: Plenum, 1994.Google Scholar
  11. 11.
    S. Shen and K. E. Oughstun, “Dispersive pulse propagation in a double-resonance Lorentz medium,” J. Opt. Soc. Am. B, vol. 6, pp. 948–963, 1989.ADSCrossRefGoogle Scholar
  12. 12.
    J. E. K. Laurens and K. E. Oughstun, “Electromagnetic impulse response of triply-distilled water,” in Ultra-Wideband, Short-Pulse Electromagnetics 4 (E. Heyman, B. Mandelbaum, and J. Shiloh, eds.), pp. 243–264, New York: Plenum, 1999.Google Scholar
  13. 13.
    E. T. Whittaker and G. N. Watson, Modern Analysis. London: Cambridge University Press, fourth ed., 1963. p. 133.Google Scholar
  14. 14.
    K. E. Oughstun, “Dynamical evolution of the Brillouin precursor in Rocard-Powles-Debye model dielectrics,” IEEE Trans. Ant. Prop., vol. 53, no. 5, pp. 1582–1590, 2005.MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, “Superconvergence and sum rules for the optical constants,” Phys. Rev. B, vol. 6, pp. 4502–4509, 1972.ADSCrossRefGoogle Scholar
  16. 16.
    H. Xiao and K. E. Oughstun, “Hybrid numerical-asymptotic code for dispersive pulse propagation calculations,” J. Opt. Soc. Am. A, vol. 15, no. 5, pp. 1256–1267, 1998.ADSCrossRefGoogle Scholar
  17. 17.
    K. E. Oughstun, J. E. K. Laurens, and C. M. Balictsis, “Asymptotic description of electromagnetic pulse propagation in a linear dispersive medium,” in Ultra-Wideband, Short-Pulse Electromagnetics (H. L. Bertoni, L. B. Felsen, and L. Carin, eds.), pp. 223–240, New York: Plenum, 1992.Google Scholar
  18. 18.
    J. McConnel, Rotational Brownian Motion and Dielectric Theory. London: Academic, 1980.Google Scholar
  19. 19.
    P. Debye, Polar Molecules. New York: Dover, 1929.zbMATHGoogle Scholar
  20. 20.
    J. E. K. Laurens, Plane Wave Pulse Propagation in a Linear, Causally Dispersive Polar Medium. PhD thesis, University of Vermont, 1993. Reprinted in UVM Research Report CSEE/93/05-02 (May 1, 1993).Google Scholar
  21. 21.
    M. A. Messier, “A standard ionosphere for the study of electromagnetic pulse propagation,” Tech. Rep. Note 117, Air Force Weapons Laboratory, Albuquerque, NM, 1971.Google Scholar
  22. 22.
    P. Drude, Lehrbuch der Optik. Leipzig: Teubner, 1900. Chap. V.Google Scholar
  23. 23.
    N. A. Cartwright and K. E. Oughstun, “Ultrawideband pulse penetration in an isotropic collisionless plasma,” in 2007 CNC/USNC North American Radio Science Meeting, 2007.Google Scholar
  24. 24.
    N. A. Cartwright and K. E. Oughstun, “Ultrawideband pulse penetration in a Debye medium with static conductivity,” in Fourth IASTED International Conference on Antennas, Radar, and Propagation, 2007.Google Scholar
  25. 25.
    E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable. London: Oxford University Press, 1935. Section 6.1.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kurt E. Oughstun
    • 1
  1. 1.College of Engineering & Mathematical Sciences School of EngineeringUniversity of VermontBurlingtonUSA

Personalised recommendations