Pulsed Electromagnetic and Optical Beam WaveFields in Temporally Dispersive Media

  • Kurt E. Oughstun
Part of the Springer Series in Optical Sciences book series (SSOS, volume 144)


The macroscopic electromagnetic field behavior in a homogeneous, isotropic, locally linear (HILL), temporally dispersive medium with no externally supplied charge or current sources is described by the macroscopic Maxwell’s equations [see (5.12)–(5.15) of Vol. 1]


Multipole Moment Magnetic Field Vector Angular Spectrum Multipole Expansion Paraxial Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K. E. Oughstun and G. C. Sherman, Pulse Propagation in Causal Dielectrics. Berlin: Springer-Verlag, 1994.Google Scholar
  2. 2.
    K. E. Oughstun, Electromagnetic & Optical Pulse Propagation Volume I: Spectral representations in Temporally Dispersive Media. Berlin: Springer-Verlag, 2006.Google Scholar
  3. 3.
    W. H. Carter, “Electromagnetic beam fields,” Optica Acta, vol. 21, pp. 871–892, 1974.ADSCrossRefGoogle Scholar
  4. 4.
    J. W. Goodman, Introduction to Fourier Optics. New York: McGraw-Hill, 1968.Google Scholar
  5. 5.
    J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill, 1941.zbMATHGoogle Scholar
  6. 6.
    I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products. New York: Academic Press, 1980.Google Scholar
  7. 7.
    G. N. Watson, A Treatise on the Theory of Bessel Functions. Cambridge: Cambridge University Press, 1922.zbMATHGoogle Scholar
  8. 8.
    M. Born and E. Wolf, Principles of Optics. Cambridge: Cambridge University Press, seventh (expanded) ed., 1999.Google Scholar
  9. 9.
    D. C. Bertilone, “The contribution of homogeneous and evanescent plane waves to the scalar optical field: exact diffraction formulae,” J. Mod. Opt., vol. 38, no. 5, pp. 865–875, 1991.MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    G. C. Sherman, J. J. Stamnes, A. J. Devaney, and É. Lalor, “Contribution of the inhomogeneous waves in angular-spectrum representations,” Opt. Commun., vol. 8, pp. 271–274, 1973.ADSCrossRefGoogle Scholar
  11. 11.
    T. Melamed and L. B. Felsen, “Pulsed-beam propagation in lossless dispersive media. I. Theory,” J. Opt. Soc. Am. A, vol. 15, pp. 1268–1276, 1998.ADSCrossRefGoogle Scholar
  12. 12.
    T. Melamed and L. B. Felsen, “Pulsed-beam propagation in lossless dispersive media. II. A numerical example,” J. Opt. Soc. Am. A, vol. 15, pp. 1277–1284, 1998.ADSCrossRefGoogle Scholar
  13. 13.
    K. E. Oughstun, “Asymptotic description of pulsed ultrawideband electromagnetic beam field propagation in dispersive, attenuative media,” J. Opt. Soc. Am. A, vol. 18, no. 7, pp. 1704–1713, 2001.ADSCrossRefGoogle Scholar
  14. 14.
    W. Heitler, The Quantum Theory of Radiation. Oxford: Clarendon Press, 1954.zbMATHGoogle Scholar
  15. 15.
    L. Mandel and E. Wolf, Optical Coherence and Quantum Optics. Cambridge: Cambridge University Press, 1995.Google Scholar
  16. 16.
    R. F. A. Clebsch, “Über die Reflexionan einer Kugelfläche,” J. Reine Angew. Math., vol. 61, pp. 195–262, 1863.zbMATHCrossRefGoogle Scholar
  17. 17.
    G. Mie, “Beiträge zur Optik truber Medien, speziell kollaidaler Metallosungen,” Ann. Phys. (Leipzig), vol. 25, pp. 377–452, 1908.Google Scholar
  18. 18.
    P. Debye, “Der lichtdruck auf Kugeln von beliegigem Material,” Ann. Phys. (Leipzig), vol. 30, pp. 57–136, 1909.Google Scholar
  19. 19.
    T. J. I. Bromwich, Phil. Trans. R. Soc. Lond., vol. 220, p. 175, 1920.Google Scholar
  20. 20.
    E. T. Whittaker, “On the partial differential equations of mathematical physics,” Math. Ann., vol. 57, pp. 333–355, 1903.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    A. J. Devaney and G. C. Sherman, “Plane-wave representations for scalar wave fields,” SIAM Rev., vol. 15, pp. 765–786, 1973.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    A. J. Devaney and E. Wolf, “Multipole expansions and plane wave representations of the electromagnetic field,” J. Math. Phys., vol. 15, pp. 234–244, 1974.MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    A. J. Devaney, A New Theory of the Debye Representation of Classical and Quantized Electromagnetic Fields. PhD thesis, The Institute of Optics, University of Rochester, 1971.Google Scholar
  24. 24.
    E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable. London: Oxford University Press, 1935. p. 110.Google Scholar
  25. 25.
    B. A. Fuks, Introduction to the Theory of Analytic Functions of Several Complex Variables. Providence: American Mathematical Society, 1963.Google Scholar
  26. 26.
    A. Erdélyi, “Zur Theorie der Kugelwellen,” Physica (The Hague), vol. 4, pp. 107–120, 1937.Google Scholar
  27. 27.
    E. L. Hill, “The theory of vector spherical harmonics,” Am. J. Phys., vol. 22, pp. 211–214, 1954.ADSzbMATHCrossRefGoogle Scholar
  28. 28.
    J. D. Jackson, Classical Electrodynamics. New York: John Wiley & Sons, Inc., third ed., 1999.Google Scholar
  29. 29.
    C. J. Bouwkamp, “Diffraction theory,” Rept. Prog. Phys., vol. 17, pp. 35–100, 1954.MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    E. Lalor, “Conditions for the validity of the angular spectrum of plane waves,” J. Opt. Soc. Am., vol. 58, pp. 1235–1237, 1968.ADSCrossRefGoogle Scholar
  31. 31.
    A. Sommerfeld, Optics, vol. IV of Lectures in Theoretical Physics. New York: Academic Press, 1964. paperback edition.Google Scholar
  32. 32.
    G. C. Sherman, J. J. Stamnes, and É. Lalor, “Asymptotic approximations to angular-spectrum representations,” J. Math. Phys., vol. 17, no. 5, pp. 760–776, 1976.MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    J. Focke, “Asymptotische Entwicklungen mittels der Methode der stationären phase,” Ber. Verh. Saechs. Akad. Wiss. Leipzig, vol. 101, no. 3, pp. 1–48, 1954.MathSciNetGoogle Scholar
  34. 34.
    G. Braun, “Zur Methode der stationären Phase,” Acta Phys. Austriaca, vol. 10, pp. 8–33, 1956.MathSciNetGoogle Scholar
  35. 35.
    D. S. Jones and M. Kline, “Asymptotic expansion of multiple integrals and the method of stationary phase,” J. Math. Phys., vol. 37, pp. 1–28, 1958.MathSciNetzbMATHGoogle Scholar
  36. 36.
    N. Chako, “Asymptotic expansions of double and multiple integrals occurring in diffraction theory,” J. Inst. Math. Appl., vol. 1, no. 4, pp. 372–422, 1965.MathSciNetCrossRefGoogle Scholar
  37. 37.
    A. Baños, Dipole Radiation in the Presence of a Conducting Half-Space. Oxford: Pergamon Press, 1966. Sect. 2.12.Google Scholar
  38. 38.
    H. Bremermann, Distributions, Complex Variables, and Fourier Transforms. Reading: Addison-Wesley, 1965. Chap. 8.Google Scholar
  39. 39.
    G. C. Sherman, “Recursion relations for coefficients in asymptotic expansions of wavefields,” Radio Sci., vol. 8, pp. 811–812, 1973.ADSCrossRefGoogle Scholar
  40. 40.
    J. Gasper, “Reflection and refraction of an arbitrary wave incident on a planar interface,” M.S. dissertation, The Institute of Optics, University of Rochester, Rochester, NY, 1972.Google Scholar
  41. 41.
    N. Bleistein, “Uniform asymptotic expansions of integrals with stationary point near algebraic singularity,” Com. Pure Appl. Math., vol. XIX, no. 4, pp. 353–370, 1966.MathSciNetCrossRefGoogle Scholar
  42. 42.
    N. Bleistein, “Uniform asymptotic expansions of integrals with many nearby stationary points and algebraic singularities,” J. Math. Mech., vol. 17, no. 6, pp. 533–559, 1967.MathSciNetzbMATHGoogle Scholar
  43. 43.
    N. Bleistein and R. Handelsman, Asymptotic Expansions of Integrals. New York: Holt, Rinehart and Winston, 1975.Google Scholar
  44. 44.
    K. E. Oughstun, “The angular spectrum representation and the Sherman expansion of pulsed electromagnetic beam fields in dispersive, attenuative media,” Pure Appl. Opt., vol. 7, no. 5, pp. 1059–1078, 1998.ADSCrossRefGoogle Scholar
  45. 45.
    G. C. Sherman, “Diffracted wavefields expressible by plane-wave expansions containing only homogeneous waves,” Phys. Rev. Lett., vol. 21, no. 11, pp. 761–764, 1968.ADSCrossRefGoogle Scholar
  46. 46.
    G. C. Sherman, “Diffracted wavefields expressible by plane-wave expansions containing only homogeneous waves,” J. Opt. Soc. Am., vol. 59, pp. 697–711, 1969.ADSCrossRefGoogle Scholar
  47. 47.
    L. Mandel and E. Wolf, Optical Coherence and Quantum Optics. Cambridge: Cambridge University Press, 1995. Chap. 3.Google Scholar
  48. 48.
    H. Kogelnik, “Imaging of optical modes – Resonators with internal lenses,” Bell Syst. Tech. J., vol. 44, pp. 455–494, 1965.Google Scholar
  49. 49.
    H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE, vol. 54, no. 10, pp. 1312–1329, 1966.CrossRefGoogle Scholar
  50. 50.
    A. J. Devaney and E. Wolf, “Radiating and nonradiating classical current distributions and the fields they generate,” Phys. Rev. D, vol. 8, pp. 1044–1047, 1973.ADSCrossRefGoogle Scholar
  51. 51.
    N. Bleistein and J. K. Cohen, “Nonuniqueness in the inverse source problem in acoustics and electromagnetics,” J. Math. Phys., vol. 18, pp. 194–201, 1977.MathSciNetADSzbMATHCrossRefGoogle Scholar
  52. 52.
    H. E. Moses and R. T. Prosser, “Initial conditions, sources, and currents for prescribed time-dependent acoustic and electromagnetic fields in three dimensions, Part I: Acoustic and electromagnetic “bullets”, expanding waves, and imploding waves,” IEEE Trans. Antennas Prop., vol. 34, no. 2, pp. 188–196, 1986.MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. 53.
    H. E. Moses, “Eigenfunctions of the curl operator, rotationally invariant Helmholtz theorem, and applications to electromagnetic theory and fluid mechanics,” SIAM J. Appl. Math., vol. 21, pp. 114–144, 1971.MathSciNetCrossRefGoogle Scholar
  54. 54.
    H. E. Moses and R. T. Prosser, “A refinement of the Radon transform and its inverse,” Proc. R. Soc. Lond. A, vol. 422, pp. 343–349, 1989.MathSciNetADSzbMATHCrossRefGoogle Scholar
  55. 55.
    H. E. Moses and R. T. Prosser, “Exact solutions of the three-dimensional scalar wave equation and Maxwell’s equations from the approximate solutions in the wave zone through the use of the Radon transform,” Proc. R. Soc. Lond. A, vol. 422, pp. 351–365, 1989.MathSciNetADSzbMATHCrossRefGoogle Scholar
  56. 56.
    E. A. Marengo, A. J. Devaney, and R. W. Ziolkowski, “New aspects of the inverse source problem with far-field data,” J. Opt. Soc. Am. A, vol. 16, pp. 1612–1622, 1999.ADSCrossRefGoogle Scholar
  57. 57.
    E. Heyman and A. J. Devaney, “Time-dependent multipoles and their application for radiation from volume source distributions,” J. Math. Phys., vol. 37, pp. 682–692, 1996.MathSciNetADSzbMATHCrossRefGoogle Scholar
  58. 58.
    T. F. Jordan, Linear Operators for Quantum Mechanics. New York: John Wiley & Sons, 1969.zbMATHGoogle Scholar
  59. 59.
    M. Bertero, “Linear inverse and ill-posed problems,” in Advances in Electronics and Electron Physics (P. W. Hawkes, ed.), pp. 1–120, New York: Academic Press, 1989.Google Scholar
  60. 60.
    D. N. G. Roy, Methods of Inverse Problems in Physics. Boca Raton, Florida CRC Press, second ed., 1991.Google Scholar
  61. 61.
    R. W. Deming and A. J. Devaney, “A filtered backpropagation algorithm for GPR,” J. Env. Eng. Geo., vol. 0, pp. 113–123, 1996.CrossRefGoogle Scholar
  62. 62.
    R. P. Porter and A. J. Devaney, “Generalized holography and computational solutions to inverse source problems,” J. Opt. Soc. Am., vol. 72, pp. 1707–1713, 1982.MathSciNetADSCrossRefGoogle Scholar
  63. 63.
    A. J. Devaney and R. P. Porter, “Holography and the inverse source problem. Part II: inhomogeneous media,” J. Opt. Soc. Am. A, vol. 2, pp. 2006–2011, 1985.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kurt E. Oughstun
    • 1
  1. 1.College of Engineering & Mathematical Sciences School of EngineeringUniversity of VermontBurlingtonUSA

Personalised recommendations