Skip to main content

Integrating Technology into Mathematics Education: Theoretical Perspectives

  • Chapter
  • First Online:
Mathematics Education and Technology-Rethinking the Terrain

Abstract

The central question at stake in this chapter is: What theoretical frames are used in technology-related research in the domain of mathematics education and what do these theoretical perspectives offer? An historical overview of the development of theoretical frameworks that are considered to be relevant to the issue of integrating technological tools into mathematics education is provided. Instrumental approaches and the notion of semiotic mediation are discussed in more detail. A plea is made for the development of integrative theoretical frameworks that allow for the articulation of different theoretical perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The International Group for the Psychology of Mathematics Education (PME):http://www.igpme.org/

  2. 2.

    The word ‘institution’ has a broad sense in this theory. Here we consider didactic institutions, devoted to the intentional learning of specific knowledge.

  3. 3.

    Stemming from the ancient Greek culture, the distinction between technical and conceptual, and the parallel between practical and ideal, refers to philosophical positions and theoretical oppositions still alive at present; elaborating on this distinction is beyond the goals of this text, but it is useful to keep it in mind in order to understand and overcome the difficulties so often encountered in communicating.

  4. 4.

    The term sign is used consistently with Pierce’s characterization: “Something which stands to somebody for something in some respect or capacity” (Pierce 1932; 2.228), taking into account the need for a broad notion of semiotic system. For further discussion, see Bartolini Bussi and Mariotti (in press) or Arzarello (2006).

References

  • Ainley, J., & Pratt, D. (2006). Design and understanding. In C. Hoyles, J.-b. Lagrange, L.H. Son, & N. Sinclair (Eds.), Proceedings of the Seventeenth Study Conference of the International Commission on Mathematical Instruction (pp 10–17) Hanoi Institute of Technology and Didirem Université Paris 7.

    Google Scholar 

  • Andresen, M. (2006). Instrumented techniques in tool – and object perspectives. In C. Hoyles, J.-b. Lagrange, L.H. Son, & N. Sinclair (Eds.), Proceedings of the Seventeenth Study Conference of the International Commission on Mathematical Instruction (pp. 19–26). Hanoi Institute of Technology and Didirem Université Paris 7.

    Google Scholar 

  • Artigue, M. (1997). Le Logiciel ‘Derive’ comme révélateur de phénomènes didactiques liés à l’utilisation d’environnements informatiques pour l’apprentissage, Educational Studies in Mathematics, 33, 133–169.

    Article  Google Scholar 

  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work, International Journal of Computers for Mathematical Learning, 7, 245–274.

    Article  Google Scholar 

  • Artigue, M. (2006). Methodological tools for comparison of learning theories in technology enhanced learning in mathematics. http://telearn.noe-kaleidoscope.org/warehouse/Artigue-Kaleidoscope-2006.pdf . Accessed 19 September 2007.

  • Artigue, M. (2008). Digital technologies: a window on theoretical issues in mathematics education. In D. Pitta- Pantazi, & G. Philippou (Eds.), Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education. Larnaca, Cyprus.

    Google Scholar 

  • Artigue, M., Defouad, B., Duperier, M., Juge, G., & Lagrange, J.-B. (1998). Intégration de calculatrices complexes dans l’enseignement des mathématiques au lycée (cahier de DIDIREM, numéro spécial, no. 4), Paris: Université Denis Diderot, Équipe DIDIREM.

    Google Scholar 

  • Artigue, M., Bottino, R.M., Cerulli, M., Kynigos, C., Lagrange, J.B., Maracci, M., Maffei, L., Mariotti, M.-A., & Morgan, C. (2006). Representing mathematics with digital media: integrative theoretical framework. http://telearn.noe-kaleidoscope.org/warehouse/ReMath_ DEL1_WP1vF-1.pdf/ . Accessed 19 September 2007.

  • Arzarello, F. (2006). Semiosis as a multimodal process, Relime, 9, 267–299.

    Google Scholar 

  • Arzarello, F., & Robutti, O. (2001). From body motion to algebra through graphing. In H. Chick, K. Stacey, J. Vincent & J. Vincent (Eds.), Proceedings of the 12th ICMI StudyConference: The Future of the Teaching and Learning of Algebra (pp. 33–40). Melbourne: The University of Melbourne.

    Google Scholar 

  • Balacheff, N., & Kaput, J.J. (1996). Computer-based learning environments in mathematics. In A.J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde, (Eds.), International Handbook of Mathematics Education (pp. 429–501). Dordrecht: Kluwer.

    Google Scholar 

  • Bartolini Bussi, M.G., & Mariotti, M.A. (1999). Semiotic mediation: from history to the mathematics classroom, For the Learning of Mathematics, 19(2), 27–35.

    Google Scholar 

  • Bartolini Bussi, M.G., & Mariotti, M.-A. (2002). Semiotic mediation in the mathematics classroom: artifacts and signs after a Vygotskian perspective. In L. English, M. Bartolini Bussi, G. Jones, R. Lesh, & D. Tirosh (Eds.), Handbook of International Research in Mathematics Education, second revised edition. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Bauersfeld, H. (1980). Hidden dimensions in the so-called reality of a mathematics classroom, Educational Studies in Mathematics, 11, 23–41.

    Article  Google Scholar 

  • Becker, H.J. (1987). The importance of a methodology that maximizes falsifiability: Its applicability to research about Logo, Educational Researcher, 16(5), 11–16.

    Google Scholar 

  • Berry, J.S., Graham, E., & Watkins, A.J.P. (1994). Integrating the DERIVE program into the teaching of mathematics, The International DERIVE Journal, 1(1), 83–96.

    Google Scholar 

  • Bishop, A.J. (1988). A review of research on visualization in mathematics education. In A. Borbás, (Ed.), Proceedings of the 12th PMEInternational Conference (pp. 170–176). Veszprem: PME.

    Google Scholar 

  • Boon, P., & Drijvers, P. (2006). Chaining operations to get insight in expressions and functions. In M. Bosch (Ed.), Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education, Sant Feliu de Guíxols, Spain, 17–21 February 2005 (pp. 969–978). http://ermeweb.free.fr/CERME4/.

  • Borba, M.C. (1993). Students’ Understanding of Transformations of Functions Using Multi Representational Software. Doctoral Dissertation, Cornell University, USA. Published in 1994. Lisbon, Portugal: Associasao de Professores de Matematica.

    Google Scholar 

  • Borba, M.C. (1994). A model for students’ understanding in a multi-representational environment. In J.P. da Ponte, J.F. Matos (Eds.), Proceedings of the 18th PMEInternational Conference, Vol. 2 (pp. 104–111). Lisbon: PME.

    Google Scholar 

  • Borba, M.C., & Villarreal, M.E. (2005). Humans-with-Media and the Reorganization of Mathematical Thinking: Information and Communication Technologies, Modeling, Visualizationand Experimentation. New York: Springer.

    Google Scholar 

  • Bosch, M., & Chevallard, Y. (1999). La sensibilité de l’activité mathématique aux ostensifs: Objet d’étude et problématique, Recherche en Didactiques des Mathématiques, 19, 77–124.

    Google Scholar 

  • Brousseau, G. (1998). Theory of didactical situationsin mathematics: didactique des mathématiques, 1970–1990 (edited and translated by N. Balacheff, M. Cooper, R. Sutherland, and V. Warfield). Dordrecht: Kluwer.

    Google Scholar 

  • Brown, J.S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning, Educational Researcher, 18(1), 32–42.

    Google Scholar 

  • Buchberger, B. (1989). Should students learn integration rules? SIGSAM Bulletin, (1), 10–17.

    Google Scholar 

  • Bueno-Ravel, L., & Gueudet, G. (2007). Online resources in mathematics: teachers’ genesis of use. In D. Pitta-Pantazi and G. Philippou (Eds.), Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education, CERME 5, (pp. 1369–1378). Cyprus: Larnaca.

    Google Scholar 

  • Burkhardt, H. (1986). Computer aware curricula: Ideas and realization. In A.G. Howson & J.-P. Kahane (Eds.), The Influence of Computer and Informatics on Mathematics and its Teaching (ICMI Study Series #1) (pp. 147–155). New York: Cambridge University Press.

    Google Scholar 

  • Cedillo, T., & Kieran, C. (2003). Initiating students into algebra with symbol-manipulating calculators. In J.T. Fey, A. Cuoco, C. Kieran, L. McMullin, & R.M. Zbiek (Eds.), Computer algebra systems in secondary school mathematics education (pp. 219–239). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Cerulli, M., & Mariotti, M.-A. (2002). L’Algebrista: un micromonde pour l’enseignement et l’apprentissage de l’algèbre, Science et techniques éducatives, Logiciels pour l’apprentissage de l’algèbre, 9, 149–170.

    Google Scholar 

  • Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du didactique, Recherches en Didactique des Mathématiques, 19, 221–266.

    Google Scholar 

  • Cobb, P., Wood, T., & Yackel, E. (1993). Discourse, mathematical thinking and classroom practice. In E.A. Forman, N. Minick, & C.A. Stone (Eds.), Contexts for Learning: Sociocultural Dynamics in Children’s Development. New York: Oxford University Press.

    Google Scholar 

  • Confrey, J. (1991). Function Probe© [Computer software]. Ithaca: Cornell University.

    Google Scholar 

  • Confrey, J. (1992). Using computers to promote students’ inventions of the function concept. In S. Malcom, L. Roberts, & K. Sheingold (Eds.), This Year in School Science 1991 (pp. 141–174). Washington, D.C.: American Association for the Advancement of Science.

    Google Scholar 

  • Dana-Picard, T., & Kidron, I. (2006). A pedagogy-embedded Computer Algebra System as an instigator to learn more mathematics. In C. Hoyles, J.-b. Lagrange, L.H. Son, & N. Sinclair (Eds.), Proceedings of the Seventeenth Study Conference of the International Commission on Mathematical Instruction (pp. 128–135). Hanoi Institute of Technology and Didirem Université Paris 7.

    Google Scholar 

  • Dienes, Z.P. (1960). Building Up Mathematics. New York: Hutchinson Educational Ltd.

    Google Scholar 

  • Dreyfus, T. (1991). On the status of visual reasoning in mathematics and mathematics education. In F. Furinghetti (Ed.), Proceedings of the 15th PMEInternational Conference Vol. 1 (pp. 33–48). Assisi: PME.

    Google Scholar 

  • Drijvers, P., & Gravemeijer, K.P.E. (2004). Computer algebra as an instrument: Examples of algebraic schemes. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The Didactical Challenge of Symbolic Calculators: Turning a Computational Device into a Mathematical Instrument (pp. 163–196). Dordrecht: Kluwer.

    Google Scholar 

  • Dugdale, S. (2007). From network to microcomputers and fractions to functions: Continuity in software research and design. In G.W. Blume & M.K. Heid (Eds.), Research on Technology and the Teaching and Learning of Mathematics: Syntheses, Cases, and Perspectives. Vol. 2: Cases and Perspectives (pp. 89–112). Greenwich, CT: Information Age Publishing.

    Google Scholar 

  • Dugdale, S., & Kibbey, D. (1980). The Fractions Curriculum of the PLATO Elementary School Mathematics Project (2nd ed.). Urbana, IL: University of Illinois Computer-Based Education.

    Google Scholar 

  • Edwards, L.D. (1998). Embodying mathematics and science: Microworlds as representations, Journal of Mathematical behavior, 17, 53–78.

    Article  Google Scholar 

  • Eisenberg, T., & Dreyfus, T. (1986). On visual versus analytical thinking in mathematics. In Proceedings of the 10th PME International Conference (pp. 153–158). London: PME.

    Google Scholar 

  • Eisenberg, T., & Dreyfus, T. (1989). On visualizing function transformations, Technical report, Beer Sheva: Ben Gurion University.

    Google Scholar 

  • Engeström, Y. (1991). Activity theoy and individual and social transformation, Activity Theory, (7/8), 6–17.

    Google Scholar 

  • Falcade, R., Laborde, C., & Mariotti, M.-A. (2007). Approaching functions: The Trace tool as an instrument of semiotic mediation, Educational Studies in Mathematics, 66(3), 317–333.

    Article  Google Scholar 

  • Feurzeig, W., & Papert, S. (1968). Programming languages as a conceptual framework for teaching mathematics. In F. Bresson, & M. de Montmollin (Eds.), La recherche en enseignement programmé, tendances actuelles (Actes colloque OTAN, Nice) (pp. 233–248). Paris: Dunod.

    Google Scholar 

  • Fey, J.T. (Ed.) (1984). Computing and Mathematics: The Impact on Secondary School Curricula. College Park: The University of Maryland.

    Google Scholar 

  • Fey, J.T., & Good, R.A. (1985). Rethinking the sequence and priorities of high school mathematics curricula. In C.R. Hirsch & M.J. Zweng (Eds.), The secondary school mathematics curriculum (Yearbook of the National Council of Teachers of Mathematics) (pp. 43–52). NCTM: Reston.

    Google Scholar 

  • Floris, R. (1999). Comment penser didactiquement la présence d’une calculatrice symbolique et graphique dans le milieu? In M. Bailleul (Ed.), Actes de la Xe École d’Été de Didactique des Mathématiques Vol. 1, (pp. 262–265). Houlgate: Association pour la Recherche en Didactique des Mathématiques.

    Google Scholar 

  • Gattegno, C. (1963). For the Teaching of Elementary Mathematics. Mt. Vernon: Cuisenaire Company of America.

    Google Scholar 

  • Gray, E.M., & Tall, D.O. (1991). Duality, ambiguity and flexibility in successful mathematical thinking. Proceedings of PME XIII Vol. II (pp. 72–79). Assisi: PME.

    Google Scholar 

  • Gueudet, G. (2006). Learning mathematics in class with online resources. In C. Hoyles, J.-b. Lagrange, L.H. Son, & N. Sinclair (Eds.), Proceedings of the Seventeenth Study Conference of the International Commission on Mathematical Instruction (pp. 205–212). Hanoi Institute of Technology and Didirem Université Paris 7.

    Google Scholar 

  • Guin D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: The case of calculators, International Journal of Computer for mathematical learning, 3, 195–227.

    Article  Google Scholar 

  • Guin, D., & Trouche, L. (2007). Une approche multidimensionnelle pour la conception collaborative de ressources pédagogiques. In M. Baron, D. Guin & L. Trouche (Dir.), Environnements informatisés et ressources numériques pour l’apprentissage: conception et usages, regards croisés (pp. 197–228). Paris: Hermès.

    Google Scholar 

  • Guin, D., Ruthven, K., & Trouche, L. (Eds.) (2004). The Didactical Challenge of Symbolic Calculators: Turning a Computational Device into a Mathematical Instrument. Dordrecht: Kluwer.

    Google Scholar 

  • Haspekian, M. (2005). An “Instrumental Approach” to study the integration of a computer tool into mathematics teaching: The case of spreadsheets, International Journal of Computers for Mathematical Learning, 10, 109–141.

    Article  Google Scholar 

  • Hatfield, L.L., & Kieren, T.E. (1972). Computer-assisted problem solving in school mathematics, Journal for Research in Mathematics Education, 3, 99–112.

    Article  Google Scholar 

  • Heid, M.K. (1988). Resequencing skills and concepts in applied calculus using the computer as tool, Journal for Research in Mathematics Education, 19, 3–25.

    Article  Google Scholar 

  • Hershkowitz, R., Schwarz, B.B., & Dreyfus, T. (2001). Abstraction in context: epistemic actions, Journal for Research in Mathematics Education, 32, 195–222.

    Article  Google Scholar 

  • Hillel, J., & Kieran, C. (1987). Schemas used by 12-year-olds in solving selected turtle geometry tasks, Recherches en Didactique des Mathématiques, 8(1.2), 61–102.

    Google Scholar 

  • Hitt, F. (Ed.) (2002) Representations and Mathematics Visualization (Papers Presented in the Working Group of the Same Name at PME-NA, 1998–2002). Mexico City: CINVESTAV-IPN.

    Google Scholar 

  • Howson, A.G., & Kahane, J.-P. (Eds.) (1986). The Influence of Computer and Informatics on Mathematics and its Teaching (ICMI Study Series #1). New York: Cambridge University Press.

    Google Scholar 

  • Hoyles, C., & Noss, R. (2003). What can digital technologies take from and bring to research in mathematics education? In A.J. Bishop, M.A. Clements, C. Keitel, J. Kilpatrick, & F.K.S. Leung, (Eds.), Second International Handbook of Mathematics Education Vol. 1 (pp. 323–349). Dordrecht: Kluwer.

    Google Scholar 

  • Jones, K. (2000). The Mediation of Mathematical Learning Through the Use of Pedagogical Tools: a Sociocultural Analysis. Invited Paper Presented at the Conference on Social Constructivism, Socioculturalism, and Social Practice Theory: Relevance and Rationalisations in Mathematics Education, Norway, March 2000.

    Google Scholar 

  • Kaput, J.J. (1987). Representation systems and mathematics. In C. Janvier (Ed.), Problems of representationin the teaching and learning of mathematics (pp. 19–26). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Kaput, J.J. (1992). Technology and mathematics education. In D.A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 515–556). New York: Macmillan.

    Google Scholar 

  • Kaput, J.J. (1998). Commentary: Representations, inscriptions, descriptions and learning – A kaleidoscope of windows, Journal of Mathematical behavior, 17, 265–281.

    Article  Google Scholar 

  • Kelly, B. (2003). The emergence of technology in mathematics education. In G.M.A. Stanic & J. Kilpatrick (Eds.), A History of School Mathematics (pp. 1037–1081). Reston: NCTM.

    Google Scholar 

  • Kent, P., Noss, R., Guile, D., Hoyles, C., & Bakker, A. (2007). Characterizing the use of mathematical knowledge in boundary-crossing situations at work, Mind, Culture, and Activity, 14(1&2), 64–82.

    Google Scholar 

  • Kidron, I., & Dana-Picard, T. (2006). The discrete continuous interplay. Will the last straw break the camel’s back? In C. Hoyles, J.-b. Lagrange, L.H. Son, & N. Sinclair (Eds.), Proceedings of the Seventeenth Study Conference of the International Commission on Mathematical Instruction (pp. 270–277). Hanoi Institute of Technology and Didirem Université Paris 7.

    Google Scholar 

  • Kieran, C., & Drijvers, P. (2006a). The co-emergence of machine techniques, paper-and-pencil techniques, and theoretical reflection: A study of CAS use in secondary school algebra, International Journal of Computers for Mathematical Learning, 11, 205–263.

    Article  Google Scholar 

  • Kieran, C., & Drijvers, P. (2006b). Learning about equivalence, equality, and equation in a CAS environment: the interaction of machine techniques, paper-and-pencil techniques, and theorizing. In C. Hoyles, J.-b. Lagrange, L.H. Son, & N. Sinclair (Eds.), Proceedings of the Seventeenth Study Conference of the International Commission on Mathematical Instruction (pp. 278–287). Hanoi Institute of Technology and Didirem Université Paris 7.

    Google Scholar 

  • Kieran, C., & Saldanha, L. (2007). Designing tasks for the co-development of conceptual and technical knowledge in CAS activity: An example from factoring. In M.K. Heid & G. Blume (Eds.), Research on Technology and the Teaching and Learning of Mathematics: Syntheses, Cases, and Perspectives (pp. 393–414). Greenwich: Information Age Publishing.

    Google Scholar 

  • Kieran, C & Yerushalmy, M. (2004). Research on the role of technological environments in algebra learning and teaching. In K. Stacey, H. Chick, & M. Kendal (Eds.), The Future of the Teaching and Learning of Algebra: The 12th ICMI Study (pp. 99–152). Dordrecht: Kluwer.

    Google Scholar 

  • Kieran, C., Forman, E., & Sfard, A. (Eds.) (2001). Bridging the individual and the social: discursive approaches to research in mathematics education (a PME special issue), Educational Studies in Mathematics, 46, 1–3.

    Google Scholar 

  • Kilpatrick, J. (1981). Research on mathematical learning and thinking in the United States. In C. Comiti & G. Vergnaud (Eds.), Proceedings of the 5th PME International Conference Vol. 2 (pp. 18–29). Grenoble: PME.

    Google Scholar 

  • Laborde, J.-M. (1990). CABRI Geometry [Computer software]. Grenoble: Université de Grenoble 1.

    Google Scholar 

  • Laborde, C., & Capponi, B. (1994). Cabri-géomètre constituant d’un milieu pour l’apprentissage de la notion de figure géométrique, Recherches en didactique des mathématiques, 14(1), 165–210.

    Google Scholar 

  • Laborde, C., & Laborde, J.-M. (1995). What about a learning environment where Euclidean concepts are manipulated with a mouse? In A.A. diSessa, C. Hoyles, R. Noss (Eds.), Computers and Exploratory Learning, NATO ASI Series, Series F, Computer and Systems Sciences Vol. 146 (pp. 241–262). Berlin: Springer.

    Google Scholar 

  • Lagrange, J.-B. (2000). L’intégration d’instruments informatiques dans l’enseignement: une approche par les techniques, Educational Studies in Mathematics, 43, 1–30.

    Article  Google Scholar 

  • Lagrange, J.-B. (2005). Curriculum, classroom practices, and tool design in the learning of functions through technology-aided experimental approaches, International Journal of Computers for Mathematical Learning, 10, 143–189.

    Article  Google Scholar 

  • Lagrange, J.-B., Artigue, M., Laborde, C., & Trouche, L. (2003). Technology and mathematics education: A multidimensional study of the evolution of research and innovation. In A.J. Bishop, M.A. Clements, C. Keitel, J. Kilpatrick, & F.K.S. Leung (Eds.), Second International Handbook of Mathematics Education Vol. 1 (pp. 237–269). Dordrecht: Kluwer.

    Google Scholar 

  • Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. Chicago: University of Chicago Press.

    Google Scholar 

  • Lakoff, G., & Núñez, R. (2000). Where Mathematics Comes from: How the Embodied Mind Brings Mathematics into Being. New York: Basic Books.

    Google Scholar 

  • Lee, A., Wong, K.-L., & Leung, A. (2006). Developing learning and assessment tasks in a dynamic geometry environment. In C. Hoyles, J.-b. Lagrange, L.H. Son, & N. Sinclair (Eds.), Proceedings of the Seventeenth Study Conference of the International Commission on Mathematical Instruction (pp. 334–341). Hanoi Institute of Technology and Didirem Université Paris 7.

    Google Scholar 

  • Leont’ev, A.N. (1976, orig. ed. 1964). Problemi dello sviluppo psichico. Roma: Editori Riuniti and Mir.

    Google Scholar 

  • Lerman, S. (1998). A moment in the zoom of a lens: Toward a discursive psychology of mathematics teaching and learning. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd Conference of the International Group for the Psychology of Mathematics Education (PME), Vol. 1 (pp. 66–81). Stellenbosch: Psychology of Mathematics Education (PME).

    Google Scholar 

  • Lerman, S., Xu, G., & Tsatsaroni, A. (2002). Developing theories of mathematics education research: The ESM story, Educational Studies in Mathematics, 51, 23–40.

    Article  Google Scholar 

  • Leung, A. (2008). Dragging in dynamic geometry environment through the lens of variation, International Journal of Computers for Mathematical Learning, 13, 135–157.

    Article  Google Scholar 

  • Leung, A., Chan, Y., & Lopez-Real, F. (2006). Instrumental genesis in dynamic geometry environments. In C. Hoyles, J.-b. Lagrange, L.H. Son, & N. Sinclair (Eds.), Proceedings of the Seventeenth Study Conference of the International Commission on Mathematical Instruction (pp. 346–353). Hanoi Institute of Technology and Didirem Université Paris 7.

    Google Scholar 

  • Lévy, P. (1990). Les technologies de l’intelligence: l’avenir de la pensée à l’ère informatique. Paris: Edition La Découverte.

    Google Scholar 

  • Mariotti, M.-A. (2000). Introduction to proof: the mediation of a dynamic software environment, Educational Studies in Mathematics, 44(1/2), 25–53.

    Article  Google Scholar 

  • Mariotti, M.-A. (2001). Justifying and proving in the Cabri environment, International Journal of Computers for Mathematical Learning, 6(3), 257–281.

    Article  Google Scholar 

  • Mariotti, M.-A. (2002). Influence of technologies advances on students’ math learning. In L. Englishet al (Eds.), Handbook of International Research in Mathematics Education (pp. 695–724). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Mariotti, M.-A. (2006). New artefacts and the mediation of mathematical meanings. In C. Hoyles, J.-b. Lagrange, L.H. Son, & N. Sinclair (Eds.), Proceedings of the Seventeenth Study Conference of the International Commission on Mathematical Instruction (pp. 378–385). Hanoi Institute of Technology and Didirem Université Paris 7.

    Google Scholar 

  • Meagher, M. (2006). Theoretical approaches to learning with digital technologies. In C. Hoyles, J.-b. Lagrange, L.H. Son, & N. Sinclair (Eds.), Proceedings of the Seventeenth Study Conference of the International Commission on Mathematical Instruction (pp. 386–393). Hanoi Institute of Technology and Didirem Université Paris 7.

    Google Scholar 

  • Meira, L. (1998). Making sense of instructional devices: the emergence of transparency in mathematical activity. Journal for Research in Mathematics Education, 29(2), 121–142.

    Article  Google Scholar 

  • Meira, L., & Carraher, D. (Eds.) (1995). Proceedings of the 19th Conference of the International Group for the Psychology of Mathematics Education. Recife: PME.

    Google Scholar 

  • Monaghan, J. (2005). Computer Algebra, instrumentation and the Anthropological Approach, Paper Presented at the 4th CAME Conference, October 2005; http://www.lonklab.ac.uk/came/events/CAME4/index.html . Accessed December 20, 2005.

  • Moreno-Armella, L., & Santos-Trigo, M. (2002). Democratic access to powerful mathematics in a developing country. In L. English, M. Bartolini Bussi, G. Jones, R. Lesh, & D. Tirosh (Eds.), Handbook of International Research in Mathematics Education, second revised edition. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Mounier, G., & Aldon, G. (1996). A problem story: factorisations of 1, International DERIVE Journal, 3, 51–61.

    Google Scholar 

  • Moschkovich, J., Schoenfeld, A.H., & Arcavi, A. (1993). Aspects of understanding: On multiple perspectives and representations of linear relations and connections among them. In T.A. Romberg, E. Fennema, & T.P. Carpenter (Eds.), Integrating Research on the Graphical Representation of Functions (pp. 69–100). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Nemirovsky, R. (2003). Three conjectures concerning the relationship between body activity and understanding mathematics. In N.A. Pateman, B.J. Dougherty, & J.T. Zilliox (Eds.), Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education Vol. 1 (pp. 105–109). Honolulu: PME.

    Google Scholar 

  • Nemirovsky, R., Kaput, J., & Roschelle, J. (1998). Enlarging mathematical activity from modelling phenomena to generating phenomena. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd PME International Conference, Vol. 3 (pp. 287–294).

    Google Scholar 

  • Nemirovsky, R., Borba, M., guest (Eds.), & Di Mattia C., tech. ed. (2004). Bodily activity and imagination in mathematics learning, Educational Studies in Mathematics, 57(3), 313–316.

    Google Scholar 

  • Noss, R., & Hoyles, C. (1996). Windows on Mathematical Meanings: Learning Cultures and Computers. Dordrecht: Kluwer.

    Google Scholar 

  • Papert, S. (1970). Teaching Children Thinking (AI Memo No. 247 and LogoMemo No. 2). Cambridge: MIT Artificial Intelligence Laboratory.

    Google Scholar 

  • Papert, S. (1972). Teaching children to be mathematicians versus teaching about mathematics, International Journal for Mathematical Education, Science, and Technology, 3, 249–262.

    Article  Google Scholar 

  • Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books.

    Google Scholar 

  • Papert, S., & Harel, I. (1991). Situating constructionism. (from the first chapter of Constructionism by S. Papert & I. Harel, published by Ablex) (April 18, 2007). http://www.papert.org/articles/SituatingConstructionism.html .

  • Pea, R. (1987). Cognitive technologies for mathematics education. In A.H. Schoenfeld (Ed.), Cognitive Science and Mathematics Education (pp. 89–122). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Pea, R. (1989). Socializing the Knowledge Transfer Problem (IRL report, IRL 89–0009). Palo Alta, CA: Institute for Research on Learning.

    Google Scholar 

  • Pierce, C.S. (1932). Collected Papers C. Hartshorn & P. Weiss, (Eds.), Vol. 2. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Presmeg, N. (2006). Research on visualization in learning and teaching mathematics. In A. Gutiérrez & P. Boero (Eds.), Handbook of Research on the Psychology of Mathematics Education: Past, Present, and Future (pp. 205–235). Rotterdam: Sense Publishers.

    Google Scholar 

  • Rabardel, P. (2002). People and Technology – A Cognitive Approach to Contemporary Instruments. http://ergoserv.psy.univ-paris8.fr . Accessed: 20 December 2005

  • Radford, L. (2003). Gestures, speech, and the sprouting of signs: A semiotic-cultural approach to students’ types of generalization, Mathematical Thinking and Learning, 5(1), 37–70.

    Article  Google Scholar 

  • Radford, L., Cerulli, M., Demers, S., & Guzmán, J. (2004). The sensual and the conceptual: Artifact mediated kinesthetic actions and semiotic activity. In M.J. Høines & A.B. Fuglestad (Eds.), Proceedings of the 28th PME International Conference Vol. 4 (pp. 73–80). Bergen, Norway.

    Google Scholar 

  • Rasmussen, C., & Nemirovsky, R. (2003). Becoming friends with acceleration: The role of tools and bodily activity in mathematical learning. In N.A. Pateman, B.J. Dougherty, & J.T. Zilliox (Eds.), Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education Vol. 1 (pp. 127–135). Honolulu: PME.

    Google Scholar 

  • Repo, S. (1994). Understanding and reflective abstraction: learning the concept of the derivative in the computer environment. The International DERIVE Journal, 1(1), 97–113.

    Google Scholar 

  • Robutti, O., & Arzarello, F. (2003). Approaching algebra through motion experiences. In N.A. Pateman, B.J. Dougherty, & J.T. Zilliox (Eds.), Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education Vol. 1 (pp. 111–115). Honolulu: PME.

    Google Scholar 

  • Romberg, T.A., Fennema, E., & Carpenter, T.P. (Eds.) (1993). Integrating Research on the Graphical Representationof Functions. Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Rotman, B. (1995). Thinking diagrams: Mathematics, writing, and virtual reality. In B. Herrnstein Smith & A. Plotnitsky (Eds.), Mathematics, Science and Postclassical Theory (pp. 380–416). Durham: Duke University Press.

    Google Scholar 

  • Sàenz-Ludlow, A., & Presmeg, N. (Eds.) (2006). Semiotic perspectives in mathematics education (a PME special issue). Educational Studies in Mathematics, 61(1/2).

    Google Scholar 

  • Schwarz, B., & Bruckheimer, M. (1988). Representations of functions and analogies. In A. Borbás (Ed.), Proceedings of the 12th PME International Conference Vol. 2 (pp. 552–559). Veszprem: PME.

    Google Scholar 

  • Schwartz, J., Yerushalmy, M., & Harvey, W. (1991). The Algebra Toolkit [Computer software]. Pleasantville: Sunburst Communications.

    Google Scholar 

  • Schwingendorf, K., & Dubinsky, E. (1990). Calculus, concepts and computers – Innovations for learning calculus. In T. Tucker (Ed.), Priming the Pump: Innovations and Resources (MAA Notes Series, No. 17) (pp. 175–198). Washington D.C.: Mathematical Association of America.

    Google Scholar 

  • Sfard, A. (1989). Transition from operational to structural conception: The notion of function revisited. In G. Vergnaud, J. Rogalski, & M. Artigue (Eds.), Proceedings of the 13th PME International Conference Vol. 3 (pp. 151–158). Paris: PME.

    Google Scholar 

  • Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin, Educational Studies in Mathematics, 22, 1–36.

    Article  Google Scholar 

  • Shaffer, D.W., & Gee, J.P. (2006). How Computer Games Help Children learn. New York: Palgrave Macmillan.

    Book  Google Scholar 

  • Shumway, R.J. (1984). Young children, programming, and mathematical thinking. In V.P. Hansen & M.J. Zweng (Eds.), Computers in Mathematics Education (pp. 127–134). Reston: NCTM.

    Google Scholar 

  • Skemp, R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77, 20–26.

    Google Scholar 

  • Steiner, H.-G. (1987). Philosophical and epistemological aspects of mathematics and their interaction with theory and practice in mathematics education. For the Learning of Mathematics, 7(1), 7–13.

    Google Scholar 

  • Streefland, L. (Ed.) (1985). Proceedings of the 9th Conference of the International Group for the Psychology of Mathematics Education. Noordwijkerhout: PME.

    Google Scholar 

  • Taylor, R. (Ed.) (1980). The Computer in the School: Tutor, Tool, Tutee. New York: Teachers College Press.

    Google Scholar 

  • Trouche, L. (2000). La parabole du gaucher et de la casserole à bec verseur: Étude des processus d’apprentissage dans un environnement de calculatrices symboliques, Educational Studies in Mathematics, 41, 239–264.

    Article  Google Scholar 

  • Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning environments: Guiding students’ command process through instrumental orchestrations, International Journal of Computers for Mathematical Learning, 9, 281–307.

    Article  Google Scholar 

  • Trouche L. (2005). Construction et conduite des instruments dans les apprentissages mathématiques: nécessité des orchestrations, Recherches en didactique des mathématiques, 25, 91–138.

    Google Scholar 

  • Trouche, L. (2007). Environnements informatisés d’apprentissage: quelle assistance didactique pour la construction des instruments mathématiques? In R. Floris & F. Conne (Eds.), Environnements informatiques, enjeux pour l’enseignement des mathématiques (pp. 19–38). Brussels: DeBoeck & Larcier.

    Google Scholar 

  • Vergnaud, G. (1990). La théorie des champs conceptuels, Recherches en Didactique des Mathématiques, 10, 133–170.

    Google Scholar 

  • Vergnaud, G. (1996). Au fond de l’apprentissage, la conceptualisation, In R. Noirfalise, & M.J. Perrin (Eds.), Actes de l’école d’été de didactique des mathématiques (pp. 174–185). Clermont-Ferrand: IREM, Université de Clermont-Ferrand II.

    Google Scholar 

  • Vérillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrumented activity, European Journal of Psychology of Education, 10, 77–103.

    Article  Google Scholar 

  • Vygotsky, L.S. (1978). Mind in Society, the Development of Higher Psychological Processes. Cambridge: Harvard University Press.

    Google Scholar 

  • Wenger, E. (1998). Communities of Practice: Learning, Meaning, and Identity. New York: Cambridge University Press.

    Google Scholar 

  • Wood, D., Bruner, J.S., & Ross, G. (1979). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, 89–100.

    Article  Google Scholar 

  • Zbiek, R.M., Heid, M.K., Blume, G., & Dick, T.P. (2007). Research on technology in mathematics education: A perspective of constructs. In F.K. LesterJr., (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 1169–1207). Charlotte, NC: NCTM and Information Age Publishing.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Drijvers, P. et al. (2009). Integrating Technology into Mathematics Education: Theoretical Perspectives. In: Hoyles, C., Lagrange, JB. (eds) Mathematics Education and Technology-Rethinking the Terrain. New ICMI Study Series, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0146-0_7

Download citation

Publish with us

Policies and ethics