Skip to main content

Animal Imaging

  • Chapter
  • First Online:
Imaging in CNS Drug Discovery and Development

Abstract

This chapter discusses challenges and practical approaches to animal fMRI with respect to anesthetic regimens, conscious animal studies, activation paradigms, optimal pulse sequence selection, and the rigor required for drug discovery applications. Examples on the use of animal fMRI to support drug discovery are presented. The examples illustrate (1) technical development and qualification of a quantitative assay for pain, (2) the use of pharmacological tools to support a link between a receptor antagonist elicited ASL-CBF change with the corresponding neuronal activity, and (3) interrogation of mechanism of action of an analgesic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Badea CT, Drangova M, Holdsworth DW, Johnson GA (2008) In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys Med Biol 53:R319–R350

    Article  PubMed  Google Scholar 

  • Bartlett EE, Hutaserani O (1961) Xylocaine for the relief of postoperative pain. Anesth Analg 40:296–304

    Article  PubMed  CAS  Google Scholar 

  • Bath FW, Jensen TS, Kastrup J, Stigsby B, Dejgard A (1990) The effect of intravenous lidocaine on nociceptive processing in diabetic neuropathy. Pain 40:29–34

    Article  Google Scholar 

  • Beckmann N, Rudin M (2006) The drug discovery process: opportunities and challenges for MR techniques. In: Beckmann N (ed) In vivo MR techniques in drug discovery and development. Taylor and Francis, New York, pp 7–28

    Google Scholar 

  • Bol CJJG, Vogelaar JPW, Mandema JW (1999) Anesthetic profile of dexmedetomidine identified by stimulus-response and continuous measurements in rats. J Pharmacol Exp Ther 291:153–160

    PubMed  CAS  Google Scholar 

  • Bonhomme V, Fiset P, Meuret P, Backman S, Plourde G, Paus T, Bushnell MC, Evans AC (2001) Propofol anesthesia and cerebral blood flow changes elicited by vibrotactile stimulation: a positron emission tomography study. J Neurophysiol 85:1299–1308

    PubMed  CAS  Google Scholar 

  • Bonvento G, Charbonne R, Correze JL, Borredon J, Seylaz J, Lacombe P (1994) Is α-chloralose plus halothane induction a suitable anesthetic regimen for cerebrovascular research? Brain Res 665:213–221

    Article  PubMed  CAS  Google Scholar 

  • Borsook D, Pendse G, Alello-Lammens M, Glicksman M, Gostic J, Sherman S, Korn J, Shaw M, Stewart K, Gostic R, Bazes S, Hargreaves R, Becerra L (2007) CNS response to a thermal stressor in human volunteers and rats may predict the clinical utility of analgesics. Drug Dev Res 68:23–41

    Article  CAS  Google Scholar 

  • Brooks JCW, Beckmann CF, Miller KL, Wise RG, Porro CA, Tracey I, Jenkinson M (2008) Physiological noise modelling for spinal functional magnetic resonance imaging studies. Neuroimage 39:680–692

    Article  PubMed  Google Scholar 

  • Chaplan SR, Bach FW, Shafer SL, Yaksh TL (1995) Prolonged alleviation of tactile allodynia by intravenous lidocaine in neuropathic rats. Anesthesialogy 83:775–785

    Article  CAS  Google Scholar 

  • Devor M (1991) Neuropathic pain and injured nerve: peripheral mechanisms. Br Med Bull 47:619–630

    PubMed  CAS  Google Scholar 

  • Devor M, Wall PD, Catalan N (1992) Systemic lidocaine silences ectopic neuroma and DRG discharge without blocking nerve conduction. Pain 48:261–268

    Article  PubMed  CAS  Google Scholar 

  • Dirks J, Fabricius P, Petersen KL, Rowbotham MC, Dahl JB (2000) The effects of systemic lidocaine on pain and secondary hyperalgesia associated with the heat/capsaicin sensitization model in healthy volunteers. Anesth Analg 91:967–972

    Article  PubMed  CAS  Google Scholar 

  • Geha PY, Baliki MN, Chialvo DR, Harden RN, Paice JA, Apkarian AV (2007) Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaine patch therapy. Pain 128:88–100

    Article  PubMed  CAS  Google Scholar 

  • Gwyther SJ, Schwartz LH (2008) How to assess anti-tumour efficacy by imaging techniques. Eur J Cancer 44:39–45

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves R (2008) The role of molecular imaging in drug discovery and development. Clin Pharmacol Ther 83:349–353

    Article  PubMed  CAS  Google Scholar 

  • Henkelman RM, Chen XJ, Sled JG (2005) Disease phenotyping: structural and functional readouts. Prog Drug Res 62:151–184

    Article  PubMed  Google Scholar 

  • Jacobson L, Chabal C, Brody MC, Mariano AJ, Chaney EF (1990) A comparison of the effects of intrathecal fentanyl and lidocaine on established postamputation stump pain. Pain 40:137–141

    Article  PubMed  CAS  Google Scholar 

  • Keilholz SD, Silva AC, Raman M, Merkle H, Koresky AP (2004) Functional MRI of the rodent somatosensory pathway using multislice echo planar imaging. Magn Reson Med 52:89–99

    Article  PubMed  Google Scholar 

  • Kennan RP, Scanley BE, Innis RB, Gore JC (1998) Physiological basis for BOLD MR signal changes due to neuronal stimulation: separation of blood volume and magnetic susceptibility effects. Magn Reson Med 40:840–846

    Article  PubMed  CAS  Google Scholar 

  • King JA, Garelick TS, Brevard ME, Chen W, Messenger TL, Duong TQ, Ferris CF (2005) Procedure for minimizing stress for fMRI studies in conscious rats. J Neurosci Methods 148:154–160

    Article  PubMed  Google Scholar 

  • Klein T, Magerl W, Rolke R, Treede R-D (2005) Human surrogate models of neuropathic pain. Pain 115:227–233

    Article  PubMed  Google Scholar 

  • Lahti KM, Ferris CF, Li F, Sotak CH, King JA (1998) Imaging brain activity in conscious animals using functional MRI. J Neurosci Methods 82:75–83

    Article  PubMed  CAS  Google Scholar 

  • Lawrence J, Mackey SC (2008) The role of neuroimaging in analgesic drug development. Drugs R D 9:323–334

    Article  PubMed  CAS  Google Scholar 

  • Le Bars D, Dickeson AH, Besson JM (1979) Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurons in the rat. Pain 6:283–304

    Article  PubMed  Google Scholar 

  • Lechner SM (2006) Glutamate-based therapeutic approaches: inhibitors of glycine transport. Curr Opin Pharmacol 6:75–81

    Article  PubMed  CAS  Google Scholar 

  • Lee S-P, Silva AC, Ugurbil K, Kim S-G (1999) Diffusion-weighted spin-echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal change. Magn Reson Med 42:919–928

    Article  PubMed  CAS  Google Scholar 

  • Lindauber U, Villringer A, Dirnagl U (1993) Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics. Am J Physiol 264:1223–1228

    Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  PubMed  CAS  Google Scholar 

  • Lukasik VM, Gillies RJ (2003) Animal anaesthesia for in vivo magnetic resonance. NMR Biomed 16:459–467

    Article  PubMed  CAS  Google Scholar 

  • Mao J, Chen LL (2000) Systemic lidocaine for neuropathic pain relief. Pain 87:7–17

    Article  PubMed  CAS  Google Scholar 

  • Masamoto K, Kim T, Fukuda M, Wang P, Kim S-G (2007) Relationship between neural, vascular, and BOLD signals in isoflurance-anesthetized rat somatosensory cortex. Cereb Cortex 17:942–950

    Article  PubMed  Google Scholar 

  • Menetrey D, Giesler GJ, Besson JM (1977) An analysis of response properties of spinal cord dorsal horn neurones to non-noxious and noxious stimuli in the spinal rat. Exp Brain Res 27:15–33

    Article  PubMed  CAS  Google Scholar 

  • Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  Google Scholar 

  • Porro CA, Cavazzuti M (1993) Spatial and temporal aspects of spinal cord and brainstem activation in the formalin pain model. Prog Neurobiol 41:565–607

    Article  PubMed  CAS  Google Scholar 

  • Puig S, Sorkin LS (1995) Formalin-evoked activity in identified primary afferent fibers: systemic lidocaine sppresses phase-2 activity. Pain 64:345–355

    Article  Google Scholar 

  • Ripoll J, Ntziachristos V, Cannet C, Babin AL, Kneuer R, Gremlich H, Beckmann N (2008) Investigating pharmacology in vivo using magnetic resonance and optical imaging. Drugs R D 9:277–306

    Article  PubMed  CAS  Google Scholar 

  • Rudin M (2008) Noninvasive imaging of receptor function: signal transduction pathways and physiological readouts. Curr Opin Drug Discov Devel 11:606–615

    PubMed  CAS  Google Scholar 

  • Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9(4):569–577

    Article  PubMed  CAS  Google Scholar 

  • Sicard K, Shen Q, Brevard ME, Sullivan R, Ferris CF, King JA, Duong TQ (2003) Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions: implications for functional MRI studies. J Cereb Blood Flow Metab 23:472–481

    Article  PubMed  CAS  Google Scholar 

  • Takamatsu H, Noda A, Kurumaji A, Murakami Y, Tatsumi M, Ichise R, Nishimura S (2003) A PET study following treatment with a pharmacological stressor, FG7142, in conscious rhesus monkeys. Brain Res 980:275–280

    Article  PubMed  CAS  Google Scholar 

  • The International Human Genome Mapping Consortium (2001) A physical map of the human genome. Nature 409:934–941

    Article  Google Scholar 

  • Tsukada H, Harada N, Nishiyama S, Ohba H, Sato K, Fukumoto D, Kakiuchi T (2000) Ketamine decreased striatal [C-11]raclopride binding with no alterations in static dopamine concentrations in the striatal extracellular fluid in the monkey brain: Multiparametric PET studies combined with microdialysis analysis. Synapse 37:95–103

    Article  PubMed  CAS  Google Scholar 

  • Tsukada H, Nishiyama S, Kakiuchi T, Ohba H, Sato A, Harada N, Nakanishi S (1999) Isoflurane anesthesia enhances the inhibitory effects of cocaine and GBR12909 on dopamine transporter: PET studies in combination with microdialysis in the monkey brain. Brain Res 849:85–96

    Article  PubMed  CAS  Google Scholar 

  • Ueki M, Miles G, Hossmann K-A (1992) Effect of alpha-chloralose, halothane, pentobarbital and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat. Acta Anaesthesiol Scand 36:318–322

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Yan S (2008) Biomedical imaging in the safety evaluation of new drugs. Lab Anim 42:433–441

    Article  PubMed  CAS  Google Scholar 

  • Weber R, Ramos-Cabrer P, Weidermann D, van Camp N, Hoehn M (2006) A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. Neuroimage 29:1303–1310

    Article  PubMed  Google Scholar 

  • Welsh D, Coimbra A, Williams DL, Sur C, Cook JJ, Hargreaves R, Williams DS (2008a) Dynamic measurement of cerebral perfusion using CASL: a tool for assessment of pharmacologic activity in the brain. ISMRM Proceedings of 16th Annual Meeting

    Google Scholar 

  • Welsh D, Coimbra A, Zhao F, Williams M, Hargreaves R, Williams DS (2008b) CBV FMRI in conscious animals using USPIO: development of a tool for measuring pharmacodynamic activity in drug development. ISMRM Proceedings of 16th Annual Meeting

    Google Scholar 

  • Williams DS, Detre JA, Leigh JS, Koresky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 89:212–216

    Article  PubMed  CAS  Google Scholar 

  • Wise RG, Rogers R, Painter D, Bantick S, Ploghaus A, Williams P, Rapeport G, Tracey I (2002) Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. Neuroimage 16:999–1014

    Article  PubMed  Google Scholar 

  • Wise RG, Tracey I (2006) The role of fMRI in drug discovery. J Magn Reson Imaging 23:862–876

    Article  PubMed  Google Scholar 

  • Zhao F, Wang P, Hendrich K, Ugurbil K, Kim S-G (2006) Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation. Neuroimage 30:1149–1160

    Article  PubMed  Google Scholar 

  • Zhao F, Williams M, Meng X, Welsh DC, Coimbra A, Crown ED, Cook JJ, Urban MO, Hargreaves R, Williams DS (2008a) BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation. Neuroimage 40:133–147

    Article  PubMed  Google Scholar 

  • Zhao F, Zhao T, Zhou L, Wu Q, Hu X (2008b) BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat. Neuroimage 39:248–260

    Article  PubMed  Google Scholar 

  • Zhao F, Williams M, Meng X, Welsh DC, Grachev ID, Hargreaves R, Williams DS (2009) Pain fMRI in rat cervical spinal cord: an echo planar imaging evaluation of sensitivity of BOLD and blood volume-weighted fMRI. Neuroimage 44:349–362

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the contributions of Denise Welsh to the unpublished data presented here. We thank Jeffery Evelhoch and Richard Hargreaves for their valuable input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Williams, D., Coimbra, A., Zhao, F. (2010). Animal Imaging. In: Borsook, D., Beccera, L., Bullmore, E., Hargreaves, R. (eds) Imaging in CNS Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0134-7_9

Download citation

Publish with us

Policies and ethics