Advertisement

Chemical Imaging: Magnetic Resonance Spectroscopy: The Basics

Chapter

Abstract

Magnetic Resonance Spectroscopy enables the detection and quantification of a wide range of cerebral metabolite compounds in vivo. Proton (1H) magnetic resonance spectroscopy in particular holds great potential for characterizing the pathophysiology of disease states and may provide important biomarkers particularly at the level of inhibitory and excitatory amino acid neurotransmitter systems. However, the field of in vivo magnetic resonance spectroscopy contains a multitude of concepts that may be unfamiliar to many readers. The present chapter is an overview of the basic fundamentals of proton magnetic resonance spectroscopy data acquisition and post processing strategies, which are currently are employed by investigators worldwide for characterizing the metabolic profile of the central nervous system and its associated disease states.

Keywords

Magnetic Resonance Spectroscopy Magnetic Resonance Spectroscopic Imaging Amino Acid Neurotransmitter Central Nervous System Drug Magnetic Resonance Spectroscopy Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 508:333–348PubMedCrossRefGoogle Scholar
  2. Choi C, Bhardwaj PP, Seres P, Kalra S, Tibbo PG, Coupland NJ (2008) Measurement of glycine in human brain by triple refocusing 1H-MRS in vivo at 3.0 T. Magn Reson Med 59(1):59–64PubMedCrossRefGoogle Scholar
  3. de Graaf RA (2007) In vivo NMR spectroscopy. Wiley, ChichesterCrossRefGoogle Scholar
  4. Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1989) Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 9(1):79–93PubMedCrossRefGoogle Scholar
  5. Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13(3):129–153PubMedCrossRefGoogle Scholar
  6. Hurd R, Sailasuta N, Srinivasan R, Vigneron DB, Pelletier D, Nelson SJ (2004) Measurement of brain glutamate using TE-averaged PRESS at 3 T. Magn Reson Med 51(3):435–440PubMedCrossRefGoogle Scholar
  7. Ke Y, Cohen BM, Bang JY, Yang M, Renshaw PF (2000) Assessment of GABA concentration in human brain using two-dimensional proton magnetic resonance spectroscopy. Psychiatry Res 100(3):169–178PubMedCrossRefGoogle Scholar
  8. Keltner JR, Wald LL, Frederick BD, Renshaw PF (1997) In vivo detection of GABA in human brain using a localized double-quantum filter technique. Magn Reson Med 37(3):366–371PubMedCrossRefGoogle Scholar
  9. Kugaya A, Sanacora G (2005) Beyond monoamines: glutamatergic function in mood disorders. CNS Spectr 10(10):808–819PubMedGoogle Scholar
  10. Mescher M, Merkle H, Kirsch J, Garwood M, Gruetter R (1998) Simultaneous in vivo spectral editing and water suppression. NMR Biomed 11(6):266–272PubMedCrossRefGoogle Scholar
  11. Petroff OA, Hyder F, Mattson RH, Rothman DL (1999) Topiramate increases brain GABA, homocarnosine, and pyrrolidinone in patients with epilepsy. Neurology 52(3):473–478PubMedGoogle Scholar
  12. Prescot AP, de BFB, Wang L, Brown J, Jensen JE, Kaufman MJ, Renshaw PF(2006) In vivo detection of brain glycine with echo-time-averaged (1)H magnetic resonance spectroscopy at 4.0 T. Magn Reson Med 55(3):681–686Google Scholar
  13. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679PubMedCrossRefGoogle Scholar
  14. Rothman DL, Petroff OA, Behar KL, Mattson RH (1993) Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo. Proc Natl Acad Sci USA 90(12):5662–5666PubMedCrossRefGoogle Scholar
  15. Salibi N, Brown MA (1998) Clinical MR spectroscopy: first principles. Wiley-Liss, CanadaGoogle Scholar
  16. Sanacora G, Mason GF, Rothman DL, Krystal JH (2002) Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am J Psychiatry 159(4):663–665PubMedCrossRefGoogle Scholar
  17. Schulte RF, Boesiger P (2006) ProFit: two-dimensional prior-knowledge fitting of J-resolved spectra. NMR Biomed 19(2):255–263PubMedCrossRefGoogle Scholar
  18. Welch JW, Bhakoo K, Dixon RM, Styles P, Sibson NR, Blamire AM (2003) In vivo monitoring of rat brain metabolites during vigabatrin treatment using localized 2D-COSY. NMR Biomed 16(1):47–54PubMedCrossRefGoogle Scholar
  19. Zhao T, Heberlein K, Jonas C, Jones DP, Hu X (2006) New double quantum coherence filter for localized detection of glutathione in vivo. Magn Reson Med 55(3):676–680PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Veterans Affairs, The Brain InstituteThe University of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations