Skip to main content

Molecular Imaging: Basic Approaches

  • Chapter
  • First Online:
Imaging in CNS Drug Discovery and Development

Abstract

Molecular imaging is a broad, multidisciplinary field that aims to discover and apply novel molecules (probes) and methods to image normal and pathological biological processes on a cellular and molecular level in vivo. One might think of molecular imaging as performing histology and pathology without harming the subject. The molecular imaging probes that target specific cells, molecules, or biological events are equivalent to the stains and antibodies used in histology and pathology. The imaging technologies and methods provide the means to visualize these probes and report on the in vivo processes. In this chapter, we cover the basic concepts of molecular imaging and show both the advantages and disadvantages of different imaging approaches. Many techniques and probes can be readily used in preclinical trials to study the efficacy of a drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ballou B et al (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15(1):79–86

    Article  PubMed  CAS  Google Scholar 

  • Beekman FJ, Vastenhouw B (2004) Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol 49(19):4579–4592

    Article  PubMed  Google Scholar 

  • Behm CZ, Lindner JR (2006) Cellular and molecular imaging with targeted contrast ultrasound. Ultrasound Q 22(1):67–72

    PubMed  Google Scholar 

  • Bogdanov A Jr et al (2002) Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Mol Imaging 1(1):16–23

    Article  PubMed  CAS  Google Scholar 

  • Bouffard J et al (2008) A highly selective fluorescent probe for thiol bioimaging. Org Lett 10(1):37–40

    Article  PubMed  CAS  Google Scholar 

  • Bruchez M Jr et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016

    Article  PubMed  CAS  Google Scholar 

  • Bruck W et al (1997) Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42(5):783–793

    Article  PubMed  CAS  Google Scholar 

  • Chen JW et al (2004) Human myeloperoxidase: a potential target for molecular MR imaging in atherosclerosis. Magn Reson Med 52(5):1021–1028

    Article  PubMed  CAS  Google Scholar 

  • Chen W et al (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46(6):945–952

    PubMed  CAS  Google Scholar 

  • Chen JW et al (2006) Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates. Radiology 240(2):473–481

    Article  PubMed  Google Scholar 

  • Chen JW et al (2008) Myeloperoxidase-targeted imaging of active inflammatory lesions in murine experimental autoimmune encephalomyelitis. Brain 131(Pt 4):1123–1133

    Article  PubMed  Google Scholar 

  • Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260

    Article  PubMed  CAS  Google Scholar 

  • Corsten MF et al (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67(19):8994–9000

    Article  PubMed  CAS  Google Scholar 

  • Cotton F et al (2003) MRI contrast uptake in new lesions in relapsing-remitting MS followed at weekly intervals. Neurology 60(4):640–646

    PubMed  Google Scholar 

  • Foster FS et al (2000) Advances in ultrasound biomicroscopy. Ultrasound Med Biol 26(1):1–27

    Article  PubMed  CAS  Google Scholar 

  • Hall CS, Lanza GM, Rose JH (1977) Experimental determination of phase velocity of perfluorocarbons: applications to targeted contrast agents. Proceedings of the IEEE Ultrasonics Symposium 97CH36118, pp 1605–1608

    Google Scholar 

  • Herschman HR (2003) Molecular imaging: looking at problems, seeing solutions. Science 302(5645):605–608

    Article  PubMed  CAS  Google Scholar 

  • Ho NH, Weissleder R, Tung CH (2007) A self-immolative reporter for beta-galactosidase sensing. Chembiochem 8(5):560–566

    Article  PubMed  CAS  Google Scholar 

  • Hoffman JM, Gambhir SS (2007) Molecular imaging: the vision and opportunity for radiology in the future. Radiology 244(1):39–47

    Article  PubMed  Google Scholar 

  • Jacobs AH et al (2005) 18F-Fluoro-l-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46(12):1948–1958

    PubMed  CAS  Google Scholar 

  • Josephson L et al (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 10(2):186–191

    Article  PubMed  CAS  Google Scholar 

  • Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13(5):661–674

    Article  PubMed  CAS  Google Scholar 

  • Kim S et al (2005) 11C-Methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32(1):52–59

    Article  PubMed  CAS  Google Scholar 

  • Kock N et al (2007) Tumor therapy mediated by lentiviral expression of shBcl-2 and S-TRAIL. Neoplasia 9(5):435–442

    Article  PubMed  CAS  Google Scholar 

  • Lanza GM, Wickline SA (2001) Targeted ultrasonic contrast agents for molecular imaging and therapy. Prog Cardiovasc Dis 44(1):13–31

    Article  PubMed  CAS  Google Scholar 

  • Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev 87:901–927

    Article  CAS  Google Scholar 

  • Law B, Weissleder R, Tung CH (2007) Protease-sensitive fluorescent nanofibers. Bioconjug Chem 18(6):1701–1704

    Article  PubMed  CAS  Google Scholar 

  • Lewin M et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18(4):410–414

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Weissleder R, Tung CH (2002) Novel near-infrared cyanine fluorochromes: synthesis, properties, and bioconjugation. Bioconjug Chem 13(3):605–610

    Article  PubMed  Google Scholar 

  • Merbach AE, Toth E (2001) The chemistry of the contrast agents in medical magnetic resonance imaging. Willey, New York

    Google Scholar 

  • Moats R et al (1997) A “smart” magnetic resonance imaging agent that reports on specific enzymatic activity. Angew Chem Int Ed Engl 36(7):725–728

    Article  Google Scholar 

  • Nagra RM et al (1997) Immunohistochemical and genetic evidence of myeloperoxidase involvement in multiple sclerosis. J Neuroimmunol 78(1–2):97–107

    Article  PubMed  CAS  Google Scholar 

  • Negrin RS, Contag CH (2006) In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease. Nat Rev Immunol 6(6):484–490

    Article  PubMed  CAS  Google Scholar 

  • Ntziachristos V (2006) Fluorescence molecular imaging. Annu Rev Biomed Eng 8:1–33

    Article  PubMed  CAS  Google Scholar 

  • Ntziachristos V et al (2002) Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8(7):757–760

    Article  PubMed  CAS  Google Scholar 

  • Perez JM et al (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20(8):816–820

    PubMed  CAS  Google Scholar 

  • Phelps M (2004) PET: molecular imaging and its biological applications. Springer, New York

    Google Scholar 

  • Pomper MG (2001) Molecular imaging: an overview. Acad Radiol 8(11):1141–1153

    Article  PubMed  CAS  Google Scholar 

  • Reimer P et al (1990) Receptor imaging: application to MR imaging of liver cancer. Radiology 177(3):729–734

    PubMed  CAS  Google Scholar 

  • Rudin M (2005) Molecular imaging. Basic principles and applications in biomedical research. Imperial College Press, London

    Book  Google Scholar 

  • Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2(2):123–131

    Article  PubMed  CAS  Google Scholar 

  • Rychak JJ et al (2007) Microultrasound molecular imaging of vascular endothelial growth factor receptor 2 in a mouse model of tumor angiogenesis. Mol Imaging 6(5):289–296

    PubMed  Google Scholar 

  • Schutt EG et al (2003) Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed Engl 42(28):3218–3235

    Article  PubMed  CAS  Google Scholar 

  • Shah K et al (2005a) Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann Neurol 57(1):34–41

    Article  PubMed  CAS  Google Scholar 

  • Shah K et al (2005b) In vivo imaging of S-TRAIL-mediated tumor regression and apoptosis. Mol Ther 11(6):926–931

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L et al (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28(5):897–916

    Article  PubMed  CAS  Google Scholar 

  • Sun EY, Weissleder R, Josephson L (2006) Continuous analyte sensing with magnetic nanoswitches. Small 2(10):1144–1147

    Article  PubMed  CAS  Google Scholar 

  • Tang Y et al (2003) In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther 14(13):1247–1254

    Article  PubMed  CAS  Google Scholar 

  • Tjuvajev JG et al (1996) Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res 56(18):4087–4095

    PubMed  CAS  Google Scholar 

  • Tung CH et al (2000) In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res 60(17):4953–4958

    PubMed  CAS  Google Scholar 

  • Villanueva FS et al (2007) Myocardial ischemic memory imaging with molecular echocardiography. Circulation 115(3):345–352

    Article  PubMed  Google Scholar 

  • Wang DS et al (2006) Molecular imaging: a primer for interventionalists and imagers. J Vasc Interv Radiol 17(9):1405–1423

    Article  PubMed  Google Scholar 

  • Weinmann HJ et al (2003) Tissue-specific MR contrast agents. Eur J Radiol 46(1):33–44

    Article  PubMed  Google Scholar 

  • Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219(2):316–333

    PubMed  CAS  Google Scholar 

  • Weissleder R et al (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175(2):489–493

    PubMed  CAS  Google Scholar 

  • Yoffe A (2001) Semiconductor quantum dots and related systems: electronic, optical, luminiscence and related properties of low dimensional systems. Adv Phys 50:1–208

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rodriguez, E., Chen, J.W. (2010). Molecular Imaging: Basic Approaches. In: Borsook, D., Beccera, L., Bullmore, E., Hargreaves, R. (eds) Imaging in CNS Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0134-7_7

Download citation

Publish with us

Policies and ethics