Skip to main content

Functional Magnetic Resonance Imaging in Drug Development

  • Chapter
  • First Online:
Imaging in CNS Drug Discovery and Development

Abstract

The field of drug development and discovery encounters a number of challenges in identifying effective therapeutics to treat central nervous system (CNS) diseases. Experimental methods such as pharmacokinetic/pharmacodynamic (PK/PD) modeling and behavioral testing have been the conventional means to assess drug efficacy. Here we introduce functional Magnetic Resonance Imaging (fMRI) as a complimentary technique that can be implemented to assess the effectiveness of a therapeutic in CNS disease. FMRI has the unique ability to characterize the de novo drug effect on specific CNS targets, as is done in Positron Emission Tomography, as well as determine how neuronal substrates or networks are influenced by the therapeutic of interest during sensory stimulation or cognitive and motor tasks. Furthermore, fMRI measures can easily be related to the results obtained from conventional standards, such as PK/PD modeling. FMRI is believed to be a promising experimental method that can assist in defining drug effect in early stages of drug development and discovery; and thus, improve the go-no-go decision-making process of newly identified drugs to treat CNS disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre GK, Zarahn E, D’Esposito M (1998) The variability of human, BOLD hemodynamic responses. Neuroimage 8(4):360–369

    PubMed  CAS  Google Scholar 

  • Aharon I, Becerra L, Chabris CF, Borsook D (2006) Noxious heat induces fMRI activation in two anatomically distinct clusters within the nucleus accumbens. Neurosci Lett 392(3):159–164

    PubMed  CAS  Google Scholar 

  • Aron AR, Behrens TE, Smith S, Frank MJ, Poldrack RA (2007) Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J Neurosci 27(14):3743–3752

    PubMed  CAS  Google Scholar 

  • Aron AR, Gluck MA, Poldrack RA (2006) Long-term test–retest reliability of functional MRI in a classification learning task. Neuroimage 29(3):1000–1006

    PubMed  Google Scholar 

  • Baliki M, Katz J, Chialvo DR, Apkarian AV (2005) Single subject pharmacological-MRI (phMRI) study: modulation of brain activity of psoriatic arthritis pain by cyclooxygenase-2 inhibitor. Mol Pain 1:32

    PubMed  CAS  Google Scholar 

  • Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden RN, Parrish TB, Apkarian AV (2006) Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 26(47):12165–12173

    PubMed  CAS  Google Scholar 

  • Baliki MN, Geha PY, Apkarian AV, Chialvo DR (2008) Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 28(6):1398–1403

    PubMed  CAS  Google Scholar 

  • Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397

    PubMed  CAS  Google Scholar 

  • Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28(37):9239–9248

    PubMed  CAS  Google Scholar 

  • Becerra L, Breiter HC, Wise R, Gonzalez RG, Borsook D (2001) Reward circuitry activation by noxious thermal stimuli. Neuron 32(5):927–946

    PubMed  CAS  Google Scholar 

  • Becerra L, Harter K, Gonzalez RG, Borsook D (2006a) Functional magnetic resonance imaging measures of the effects of morphine on central nervous system circuitry in opioid-naive healthy volunteers. Anesth Analg 103(1):208–216 table of contents

    PubMed  CAS  Google Scholar 

  • Becerra L, Iadarola M, Borsook D (2004) CNS activation by noxious heat to the hand or foot: site-dependent delay in sensory but not emotion circuitry. J Neurophysiol 91(1):533–541

    PubMed  CAS  Google Scholar 

  • Becerra L, Morris S, Bazes S, Gostic R, Sherman S, Gostic J, Pendse G, Moulton E, Scrivani S, Keith D et al (2006b) Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli. J Neurosci 26(42):10646–10657

    PubMed  CAS  Google Scholar 

  • Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360(1457):1001–1013

    PubMed  Google Scholar 

  • Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23(2):137–152

    PubMed  Google Scholar 

  • Belliveau JW, Kennedy DN Jr, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254(5032):716–719

    PubMed  CAS  Google Scholar 

  • Bingel U, Glascher J, Weiller C, Buchel C (2004a) Somatotopic representation of nociceptive information in the putamen: an event-related fMRI study. Cereb Cortex 14(12):1340–1345

    PubMed  CAS  Google Scholar 

  • Bingel U, Lorenz J, Glauche V, Knab R, Glascher J, Weiller C, Buchel C (2004b) Somatotopic organization of human somatosensory cortices for pain: a single trial fMRI study. Neuroimage 23(1):224–232

    PubMed  CAS  Google Scholar 

  • Birn RM, Bandettini PA (2005) The effect of stimulus duty cycle and ‘‘off’’ duration on BOLD response linearity. Neuroimage 27:70–82

    PubMed  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    PubMed  CAS  Google Scholar 

  • Borras MC, Becerra L, Ploghaus A, Gostic JM, DaSilva A, Gonzalez RG, Borsook D (2004) fMRI measurement of CNS responses to naloxone infusion and subsequent mild noxious thermal stimuli in healthy volunteers. J Neurophysiol 91(6):2723–2733

    PubMed  CAS  Google Scholar 

  • Borsook D, Becerra L, Carlezon WA Jr, Shaw M, Renshaw P, Elman I, Levine J (2007) Reward-aversion circuitry in analgesia and pain: implications for psychiatric disorders. Eur J Pain 11(1):7–20

    PubMed  Google Scholar 

  • Borsook D, Becerra L, Hargreaves R (2006) A role for fMRI in optimizing CNS drug development. Nat Rev Drug Discov 5(5):411–424

    PubMed  CAS  Google Scholar 

  • Borsook D, Becerra LR (2006) Breaking down the barriers: fMRI applications in pain, analgesia and analgesics. Mol Pain 2:30

    PubMed  Google Scholar 

  • Borsook D, DaSilva AF, Ploghaus A, Becerra L (2003) Specific and somatotopic functional magnetic resonance imaging activation in the trigeminal ganglion by brush and noxious heat. J Neurosci 23(21):7897–7903

    PubMed  CAS  Google Scholar 

  • Brooks JC, Zambreanu L, Godinez A, Craig AD, Tracey I (2005) Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. Neuroimage 27(1):201–209

    PubMed  CAS  Google Scholar 

  • Buchel C, Friston KJ (1997) Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb Cortex 7(8):768–778

    PubMed  CAS  Google Scholar 

  • Buckner RL (1998) Event-related fMRI and the hemodynamic response. Hum Brain Mapp 6(5–6):373–377

    PubMed  CAS  Google Scholar 

  • Casey BJ, Cohen JD, O’Craven K, Davidson RJ, Irwin W, Nelson CA, Noll DC, Hu X, Lowe MJ, Rosen BR et al (1998) Reproducibility of fMRI results across four institutions using a spatial working memory task. Neuroimage 8(3):249–261

    PubMed  CAS  Google Scholar 

  • Chen JI, Ha B, Bushnell MC, Pike B, Duncan GH (2002) Differentiating noxious- and innocuous-related activation of human somatosensory cortices using temporal analysis of fMRI. J Neurophysiol 88(1):464–474

    PubMed  Google Scholar 

  • Cherkassky VL, Kana RK, Keller TA, Just MA (2006) Functional connectivity in a baseline resting-state network in autism. NeuroReport 17(16):1687–1690

    PubMed  Google Scholar 

  • Clark MR, Stoller KB, Brooner RK (2008) Assessment and management of chronic pain in individuals seeking treatment for opioid dependence disorder. Can J Psychiatry 53(8):496–508

    PubMed  Google Scholar 

  • Cook DB, Lange G, Ciccone DS, Liu WC, Steffener J, Natelson BH (2004) Functional imaging of pain in patients with primary fibromyalgia. J Rheumatol 31(2):364–378

    PubMed  Google Scholar 

  • Craig AD, Chen K, Bandy D, Reiman EM (2000) Thermosensory activation of insular cortex. Nat Neurosci 3(2):184–190

    PubMed  CAS  Google Scholar 

  • DaSilva AF, Becerra L, Makris N, Strassman AM, Gonzalez RG, Geatrakis N, Borsook D (2002) Somatotopic activation in the human trigeminal pain pathway. J Neurosci 22(18):8183–8192

    PubMed  CAS  Google Scholar 

  • Davis KD, Wood ML, Crawley AP, Mikulis DJ (1995) fMRI of human somatosensory and cingulate cortex during painful electrical nerve stimulation. NeuroReport 7(1):321–325

    PubMed  CAS  Google Scholar 

  • De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29(4):1359–1367

    PubMed  Google Scholar 

  • Detre JA, Alsop DC (1999) Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system. Eur J Radiol 30(2):115–124

    PubMed  CAS  Google Scholar 

  • Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23(1):37–45

    PubMed  CAS  Google Scholar 

  • Detre JA, Wang J (2002) Technical aspects and utility of fMRI using BOLD and ASL. Clin Neurophysiol 113(5):621–634

    PubMed  Google Scholar 

  • Di Piero V, Jones AK, Iannotti F, Powell M, Perani D, Lenzi GL, Frackowiak RS (1991) Chronic pain: a PET study of the central effects of percutaneous high cervical cordotomy. Pain 46(1):9–12

    PubMed  Google Scholar 

  • Endo T, Spenger C, Hao J, Tominaga T, Wiesenfeld-Hallin Z, Olson L, Xu XJ (2008) Functional MRI of the brain detects neuropathic pain in experimental spinal cord injury. Pain 138(2):292–300

    PubMed  Google Scholar 

  • Esposito F, Aragri A, Pesaresi I, Cirillo S, Tedeschi G, Marciano E, Goebel R, Di Salle F (2008) Independent component model of the default-mode brain function: combining individual-level and population-level analyses in resting-state fMRI. Magn Reson Imaging 26(7):905–913

    PubMed  Google Scholar 

  • Fava M (2003) The role of the serotonergic and noradrenergic neurotransmitter systems in the treatment of psychological and physical symptoms of depression. J Clin Psychiatry 64(Suppl 13):26–29

    PubMed  CAS  Google Scholar 

  • Formisano E, Esposito F, Di Salle F, Goebel R (2004) Cortex-based independent component analysis of fMRI time series. Magn Reson Imaging 22(10):1493–1504

    PubMed  Google Scholar 

  • Friedman L, Glover GH (2006) Report on a multicenter fMRI quality assurance protocol. J Magn Reson Imaging 23(6):827–839

    PubMed  Google Scholar 

  • Friedman L, Stern H, Brown GG, Mathalon DH, Turner J, Glover GH, Gollub RL, Lauriello J, Lim KO, Cannon T et al (2008) Test–retest and between-site reliability in a multicenter fMRI study. Hum Brain Mapp 29(8):958–972

    PubMed  Google Scholar 

  • Friston K (2002) Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Annu Rev Neurosci 25:221–250

    PubMed  CAS  Google Scholar 

  • Friston KJ, Buchel C (2000) Attentional modulation of effective connectivity from V2 to V5/MT in humans. Proc Natl Acad Sci U S A 97(13):7591–7596

    PubMed  CAS  Google Scholar 

  • Friston KJ, Frith CD, Frackowiak RS (1993a) Principal component analysis learning algorithms: a neurobiological analysis. Proc Biol Sci 254(1339):47–54

    PubMed  CAS  Google Scholar 

  • Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993b) Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13(1):5–14

    PubMed  CAS  Google Scholar 

  • Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19(4):1273–1302

    PubMed  CAS  Google Scholar 

  • Friston KJ, Josephs O, Rees G, Turner R (1998) Nonlinear event related responses in fMRI. Magn Reson Med 39(1):41–52

    PubMed  CAS  Google Scholar 

  • Furey ML, Pietrini P, Haxby JV (2000) Cholinergic enhancement and increased selectivity of perceptual processing during working memory. Science 290(5500):2315–2319

    PubMed  CAS  Google Scholar 

  • Gallichan D, Jezzard P (2008) Modeling the effects of dispersion and pulsatility of blood flow in pulsed arterial spin labeling. Magn Reson Med 60(1):53–63

    PubMed  Google Scholar 

  • Garcia DM, Duhamel G, Alsop DC (2005) Efficiency of inversion pulses for background suppressed arterial spin labeling. Magn Reson Med 54(2):366–372

    PubMed  Google Scholar 

  • Giesecke T, Gracely RH, Grant MA, Nachemson A, Petzke F, Williams DA, Clauw DJ (2004) Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum 50(2):613–623

    PubMed  Google Scholar 

  • Gracely RH, Geisser ME, Giesecke T, Grant MA, Petzke F, Williams DA, Clauw DJ (2004) Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain 127(Pt 4):835–843

    PubMed  CAS  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100(1):253–258

    PubMed  CAS  Google Scholar 

  • Gusnard DA, Raichle ME, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2(10):685–694

    PubMed  CAS  Google Scholar 

  • Holm DA, Sidaros K (2006) Slice profile optimization in arterial spin labeling using presaturation and optimized RF pulses. Magn Reson Imaging 24(9):1229–1240

    PubMed  Google Scholar 

  • Honey G, Bullmore E (2004) Human pharmacological MRI. Trends Pharmacol Sci 25(7):366–374

    PubMed  CAS  Google Scholar 

  • Honey GD, Bullmore ET, Soni W, Varatheesan M, Williams SC, Sharma T (1999) Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia. Proc Natl Acad Sci U S A 96(23):13432–13437

    PubMed  CAS  Google Scholar 

  • Horwitz B (1990) Simulating functional interactions in the brain: a model for examining correlations between regional cerebral metabolic rates. Int J Biomed Comput 26(3):149–170

    PubMed  CAS  Google Scholar 

  • Horwitz B (2003) The elusive concept of brain connectivity. Neuroimage 19(2 Pt 1):466–470

    PubMed  Google Scholar 

  • Iannetti GD, Zambreanu L, Wise RG, Buchanan TJ, Huggins JP, Smart TS, Vennart W, Tracey I (2005) Pharmacological modulation of pain-related brain activity during normal and central sensitization states in humans. Proc Natl Acad Sci U S A 102(50):18195–18200

    PubMed  CAS  Google Scholar 

  • Jenkins BG, Chen YCI, Mandeville JB (2003) Pharmacological magnetic resonance imaging (phMRI). In: van Bruggen N, Roberts T (eds) Biomedical imaging in experimental neuroscience. CRC Press, New York, pp 155–209

    Google Scholar 

  • Johnston JM, Vaishnavi SN, Smyth MD, Zhang D, He BJ, Zempel JM, Shimony JS, Snyder AZ, Raichle ME (2008) Loss of resting interhemispheric functional connectivity after complete section of the corpus callosum. J Neurosci 28(25):6453–6458

    PubMed  CAS  Google Scholar 

  • Jones AK, Brown WD, Friston KJ, Qi LY, Frackowiak RS (1991) Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc Biol Sci 244(1309):39–44

    PubMed  CAS  Google Scholar 

  • Kim DS, Kim M (2005) Combining functional and diffusion tensor MRI. Ann N Y Acad Sci 1064:1–15

    PubMed  Google Scholar 

  • Kruggel F, von Cramon DY (1999) Temporal properties of the hemodynamic response in functional MRI. Hum Brain Mapp 8(4):259–271

    PubMed  CAS  Google Scholar 

  • Kwong KK, Bellliveau JW, Chesler DA, Goldberg IE, Weiskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679

    PubMed  CAS  Google Scholar 

  • Kwong KK, Hopkins AL, Belliveau JW, Chesler DA, Porkka LM, McKinstry RC, Finelli DA, Hunter GJ, Moore JB, Barr RG (1991) Proton NMR imaging of cerebral blood flow using H2(17)O. Magn Reson Med 22(1):154–158

    PubMed  CAS  Google Scholar 

  • Labus JS, Naliboff BN, Fallon J, Berman SM, Suyenobu B, Bueller JA, Mandelkern M, Mayer EA (2008) Sex differences in brain activity during aversive visceral stimulation and its expectation in patients with chronic abdominal pain: a network analysis. Neuroimage 41(3):1032–1043

    PubMed  CAS  Google Scholar 

  • Lane RD, Reiman EM, Ahern GL, Schwartz GE, Davidson RJ (1997) Neuroanatomical correlates of happiness, sadness, and disgust. Am J Psychiatry 154(7):926–933

    PubMed  CAS  Google Scholar 

  • Lauterbur PC (1973) Image formation by induced local interaction: examples employing nuclear magnetic resonance. Nature 242:190–191

    CAS  Google Scholar 

  • Lebel A, Becerra L, Wallin D, Moulton EA, Morris S, Pendse G, Jasciewicz J, Stein M, Aiello-Lammens M, Grant E et al (2008) fMRI reveals distinct CNS processing during symptomatic and recovered complex regional pain syndrome in children. Brain 131(Pt 7):1854–1879

    PubMed  CAS  Google Scholar 

  • Leslie RA, James MF (2000) Pharmacological magnetic resonance imaging: a new application for functional MRI. Trends Pharmacol Sci 21(8):314–318

    PubMed  CAS  Google Scholar 

  • Li Y, Xu N, Fitzpatrick JM, Morgan VL, Pickens DR, Dawant BM (2007) Accounting for signal loss due to dephasing in the correction of distortions in gradient-echo EPI via nonrigid registration. IEEE Trans Med Imaging 26(12):1698–1707

    PubMed  Google Scholar 

  • Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453(7197):869–878

    PubMed  CAS  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    PubMed  CAS  Google Scholar 

  • Logothetis NK, Pfeuffer J (2004) On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 22(10):1517–1531

    PubMed  Google Scholar 

  • Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769

    PubMed  CAS  Google Scholar 

  • Loubinoux I, Carel C, Alary F, Boulanouar K, Viallard G, Manelfe C, Rascol O, Celsis P, Chollet F (2001) Within-session and between-session reproducibility of cerebral sensorimotor activation: a test–retest effect evidenced with functional magnetic resonance imaging. J Cereb Blood Flow Metab 21(5):592–607

    PubMed  CAS  Google Scholar 

  • Ma L, Wang B, Chen X, Xiong J (2007) Detecting functional connectivity in the resting brain: a comparison between ICA and CCA. Magn Reson Imaging 25(1):47–56

    PubMed  Google Scholar 

  • Maihofner C, Forster C, Birklein F, Neundorfer B, Handwerker HO (2005) Brain processing during mechanical hyperalgesia in complex regional pain syndrome: a functional MRI study. Pain 114(1–2):93–103

    PubMed  Google Scholar 

  • Manoach DS, Halpern EF, Kramer TS, Chang Y, Goff DC, Rauch SL, Kennedy DN, Gollub RL (2001) Test–retest reliability of a functional MRI working memory paradigm in normal and schizophrenic subjects. Am J Psychiatry 158(6):955–958

    PubMed  CAS  Google Scholar 

  • Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C 10:55–58

    Google Scholar 

  • Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF, Kolachana B, Callicott JH, Weinberger DR (2003) Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A 100(10):6186–6191

    PubMed  CAS  Google Scholar 

  • McIntosh AR, Gonzales-Lima F (1994) Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp 2:2–22

    Google Scholar 

  • McIntosh AR, Grady CL, Ungerleider LG, Haxby JV, Rapoport SI, Horwitz B (1994) Network analysis of cortical visual pathways mapped with PET. J Neurosci 14(2):655–666

    PubMed  CAS  Google Scholar 

  • Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL (2000) Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage 11(6 Pt 1):735–759

    PubMed  CAS  Google Scholar 

  • Millecamps M, Centeno MV, Berra HH, Rudick CN, Lavarello S, Tkatch T, Apkarian AV (2007) D-cycloserine reduces neuropathic pain behavior through limbic NMDA-mediated circuitry. Pain 132(1–2):108–123

    PubMed  CAS  Google Scholar 

  • Miyazaki M, Fujii E, Saijo T, Mori K, Hashimoto T, Kagami S, Kuroda Y (2007) Short-latency somatosensory evoked potentials in infantile autism: evidence of hyperactivity in the right primary somatosensory area. Dev Med Child Neurol 49(1):13–17

    PubMed  Google Scholar 

  • Morgan V, Pickens D, Gautam S, Kessler R, Mertz H (2005) Amitriptyline reduces rectal pain related activation of the anterior cingulate cortex in patients with irritable bowel syndrome. Gut 54(5):601–607

    PubMed  CAS  Google Scholar 

  • Murphy FC, Nimmo-Smith I, Lawrence AD (2003) Functional neuroanatomy of emotions: a meta-analysis. Cogn Affect Behav Neurosci 3(3):207–233

    PubMed  Google Scholar 

  • Nader R, Oberlander TF, Chambers CT, Craig KD (2004) Expression of pain in children with autism. Clin J Pain 20(2):88–97

    PubMed  Google Scholar 

  • Ogawa S, Lee TM (1990) Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med 16(1):9–18

    PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990a) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872

    PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM, Nayak AS, Glynn P (1990b) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14(1):68–78

    PubMed  CAS  Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89(13):5951–5955

    PubMed  CAS  Google Scholar 

  • Ohara S, Crone NE, Weiss N, Kim JH, Lenz FA (2008) Analysis of synchrony demonstrates that the presence of “pain networks” prior to a noxious stimulus can enable the perception of pain in response to that stimulus. Exp Brain Res 185(2):353–358

    PubMed  CAS  Google Scholar 

  • Pariente J, Loubinoux I, Carel C, Albucher JF, Leger A, Manelfe C, Rascol O, Chollet F (2001) Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke. Ann Neurol 50(6):718–729

    PubMed  CAS  Google Scholar 

  • Parkes LM (2005) Quantification of cerebral perfusion using arterial spin labeling: two-compartment models. J Magn Reson Imaging 22(6):732–736

    PubMed  Google Scholar 

  • Pauling L, Coryell CD (1936) The magnetic properties and structure of hemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A 22:210–216

    PubMed  CAS  Google Scholar 

  • Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16(2):331–348

    PubMed  Google Scholar 

  • Ploghaus A, Narain C, Beckmann CF, Clare S, Bantick S, Wise R, Matthews PM, Rawlins JN, Tracey I (2001) Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J Neurosci 21(24):9896–9903

    PubMed  CAS  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682

    PubMed  CAS  Google Scholar 

  • Ribary U, Ioannides A, Singh K, Hasson R, Bolton J, Lado F, Mogilner A, Llinas R (1991) Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc Natl Acad Sci U S A 88(24):11037–11041

    PubMed  CAS  Google Scholar 

  • Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25:230–242

    PubMed  Google Scholar 

  • Roy C, Sherrington C (1890) On the regulation of the blood-supply of the brain. J Physiol 11:85–108

    PubMed  CAS  Google Scholar 

  • Schwarz AJ, Gozzi A, Reese T, Bifone A (2007a) Functional connectivity in the pharmacologically activated brain: resolving networks of correlated responses to d-amphetamine. Magn Reson Med 57(4):704–713

    PubMed  Google Scholar 

  • Schwarz AJ, Gozzi A, Reese T, Bifone A (2007b) In vivo mapping of functional connectivity in neurotransmitter systems using pharmacological MRI. Neuroimage 34(4):1627–1636

    PubMed  Google Scholar 

  • Schwarz AJ, Gozzi A, Reese T, Heidbreder CA, Bifone A (2007c) Pharmacological modulation of functional connectivity: the correlation structure underlying the phMRI response to d-amphetamine modified by selective dopamine D3 receptor antagonist SB277011A. Magn Reson Imaging 25(6):811–820

    PubMed  CAS  Google Scholar 

  • Schweinhardt P, Bountra C, Tracey I (2006) Pharmacological FMRI in the development of new analgesic compounds. NMR Biomed 19(6):702–711

    PubMed  CAS  Google Scholar 

  • Schweinhardt P, Kalk N, Wartolowska K, Chessell I, Wordsworth P, Tracey I (2008) Investigation into the neural correlates of emotional augmentation of clinical pain. Neuroimage 40(2):759–766

    PubMed  Google Scholar 

  • Sell LA, Simmons A, Lemmens GM, Williams SC, Brammer M, Strang J (1997) Functional magnetic resonance imaging of the acute effect of intravenous heroin administration on visual activation in long-term heroin addicts: results from a feasibility study. Drug Alcohol Depend 49(1):55–60

    PubMed  CAS  Google Scholar 

  • Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9(4):569–577

    PubMed  CAS  Google Scholar 

  • Shmuel A, Yacoub E, Pfeuffer J, Van de Moortele PF, Adriany G, Hu X, Ugurbil K (2002) Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36(6):1195–1210

    PubMed  CAS  Google Scholar 

  • Smith KA, Ploghaus A, Cowen PJ, McCleery JM, Goodwin GM, Smith S, Tracey I, Matthews PM (2002) Cerebellar responses during anticipation of noxious stimuli in subjects recovered from depression. Functional magnetic resonance imaging study. Br J Psychiatry 181:411–415

    PubMed  CAS  Google Scholar 

  • Smith SM, Beckmann CF, Ramnani N, Woolrich MW, Bannister PR, Jenkinson M, Matthews PM, McGonigle DJ (2005) Variability in fMRI: a re-examination of inter-session differences. Hum Brain Mapp 24(3):248–257

    PubMed  Google Scholar 

  • Sorg C, Riedl V, Muhlau M, Calhoun VD, Eichele T, Laer L, Drzezga A, Forstl H, Kurz A, Zimmer C et al (2007) Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 104(47):18760–18765

    PubMed  CAS  Google Scholar 

  • Stefanovic B, Warnking JM, Pike GB (2004) Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 22(2):771–778

    PubMed  Google Scholar 

  • Stevick JW, Harding SG, Paquet U, Ansorge RE, Carpenter TA, Williams GB (2008) Gaussian process modeling for image distortion correction in echo planar imaging. Magn Reson Med 59(3):598–606

    PubMed  Google Scholar 

  • Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol 4(6):e1000100

    PubMed  Google Scholar 

  • Ter-Pogossian KR, Eichling JO, Davis DO, Welch MJ, Metzger JM (1969) The determination of regional cerebral blood flow by means of water labeled with radioactive oxygen-15. Radiology 93:31–40

    PubMed  CAS  Google Scholar 

  • Ter-Pogossian MM, Herscovitch P (1985) Radioactive oxygen-15 in the study of cerebral blood flow, blood volume, and oxygen metabolism. Semin Nucl Med 15(4):377–394

    PubMed  CAS  Google Scholar 

  • Thierry G, Boulanouar K, Kherif F, Ranjeva JP, Demonet JF (1999) Temporal sorting of neural components underlying phonological processing. NeuroReport 10(12):2599–2603

    PubMed  CAS  Google Scholar 

  • Tracey I (2008) Imaging pain. Br J Anaesth 101(1):32–39

    PubMed  CAS  Google Scholar 

  • Turner R, Le Bihan D, Moonen CTW, DesPres D, Frank J (1991) Echo-Planar time course MRI of cat brain oxygenation changes. Magn Reson Med 29:277–279

    Google Scholar 

  • Upadhyay J, Ducros M, Knaus TA, Lindgren KA, Silver A, Tager-Flusberg H, Kim DS (2006) Function and connectivity in human primary auditory cortex: a combined fMRI and DTI study at 3 tesla. Cereb Cortex 17:2420–2432

    PubMed  Google Scholar 

  • Upadhyay J, Silver A, Knaus TA, Lindgren KA, Ducros M, Kim DS, Tager-Flusberg H (2008) Effective and structural connectivity in the human auditory cortex. J Neurosci 28(13):3341–3349

    PubMed  CAS  Google Scholar 

  • van Gelderen P, WHW C, de Zwart JA, Cohen L, Hallett M, Duyn JH (2005) Resolution and reproducibility of BOLD and perfusion functional MRI at 3.0 Tesla. Magn Reson Med 54(3):569–576

    PubMed  Google Scholar 

  • Wager TD, Phan KL, Liberzon I, Taylor SF (2003) Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging. Neuroimage 19(3):513–531

    PubMed  Google Scholar 

  • Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 89(1):212–216

    PubMed  CAS  Google Scholar 

  • Williams LS, Schmalfuss IM, Sistrom CL, Inoue T, Tanaka R, Seoane ER, Mancuso AA (2003) MR imaging of the trigeminal ganglion, nerve, and the perineural vascular plexus: normal appearance and variants with correlation to cadaver specimens. AJNR Am J Neuroradiol 24(7):1317–1323

    PubMed  Google Scholar 

  • Wise RG, Rogers R, Painter D, Bantick S, Ploghaus A, Williams P, Rapeport G, Tracey I (2002) Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. Neuroimage 16(4):999–1014

    PubMed  Google Scholar 

  • Wise RG, Tracey I (2006) The role of fMRI in drug discovery. J Magn Reson Imaging 23(6):862–876

    PubMed  Google Scholar 

  • Wise RG, Williams P, Tracey I (2004) Using fMRI to quantify the time dependence of remifentanil analgesia in the human brain. Neuropsychopharmacology 29(3):626–635

    PubMed  CAS  Google Scholar 

  • Ziyal IM, Sekhar LN, Ozgen T, Soylemezoglu F, Alper M, Beser M (2004) The trigeminal nerve and ganglion: an anatomical, histological, and radiological study addressing the transtrigeminal approach. Surg Neurol 61(6):564–573 discussion 573-4

    PubMed  Google Scholar 

  • Zou KH, Greve DN, Wang M, Pieper SD, Warfield SK, White NS, Manandhar S, Brown GG, Vangel MG, Kikinis R et al (2005) Reproducibility of functional MR imaging: preliminary results of prospective multi-institutional study performed by Biomedical Informatics Research Network. Radiology 237(3):781–789

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lino Becerra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Upadhyay, J., Borsook, D., Becerra, L. (2010). Functional Magnetic Resonance Imaging in Drug Development. In: Borsook, D., Beccera, L., Bullmore, E., Hargreaves, R. (eds) Imaging in CNS Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0134-7_5

Download citation

Publish with us

Policies and ethics