Skip to main content

Translational MRI in CNS Drug Discovery

  • Chapter
  • First Online:
  • 642 Accesses

Abstract

Translational neuroimaging has the potential to create a more successful link between preclinical and clinical research, thereby improving the predictivity of animal models and the development of innovative therapeutics. In this review, the emphasis is on “back translation”: how can clinical imaging data be best utilized to enhance preclinical drug discovery programs? Examples selected in the fields of Alzheimer’s disease and Schizophrenia elucidate the great potential – as well as some pitfalls – of translational MRI in CNS drug discovery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anand A, Charney DS, Oren DA et al (2000) Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists. Arch Gen Psychiatry 57(3):270–276

    Article  PubMed  CAS  Google Scholar 

  • Bartlett S (2005) MRI for in vivo detection of amyloid plaques. Lancet Neurol 4(5):276

    Article  PubMed  Google Scholar 

  • Beckmann N, Schuler A, Mueggler T et al (2003) Age-dependent cerebrovascular abnormalities and blood flow disturbances in APP23 mice modeling Alzheimer’s disease. J Neurosci 23(24):8453–8459

    PubMed  CAS  Google Scholar 

  • Benveniste H, Einstein G, Kim KR et al (1999) Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc Natl Acad Sci USA 96(24):14079–14084

    Article  PubMed  CAS  Google Scholar 

  • Bertolino A, Callicott JH, Mattay VS et al (2001) The effect of treatment with antipsychotic drugs on brain N-acetylaspartate measures in patients with schizophrenia. Biological Psychiatry 49:39–46

    Article  PubMed  CAS  Google Scholar 

  • Bertolino A, Roffman JL, Lipska BK et al (2002) Reduced N-acetylaspartate in prefrontal cortex of adult rats with neonatal hippocampal damage. Cereb Cortex 12(9):983–990

    Article  PubMed  Google Scholar 

  • Bockhorst KH, Narayana PA, Liu R et al (2008) Early postnatal development of rat brain: in vivo diffusion tensor imaging. J Neurosci Res 86(7):1520–1528

    Article  PubMed  CAS  Google Scholar 

  • Braakman N, Matysik J, van Duinen SG et al (2006) Longitudinal assessment of Alzheimer’s beta-amyloid plaque development in transgenic mice monitored by in vivo magnetic resonance microimaging. J Magn Reson Imaging 24(3):530–536

    Article  PubMed  Google Scholar 

  • Brambilla P, Tansella M (2007) The role of white matter for the pathophysiology of schizophrenia. Int Rev Psychiatry 19(4):459–468

    Article  PubMed  Google Scholar 

  • Braus DF, Ende G, Weber-Fahr W et al (2001) Favorable effect on neuronal viability in the anterior cingulated gyrus due to long-term treatment with atypical antipsychotics: an MRSI study. Pharmacopsychiatry 34(6):251–253

    PubMed  CAS  Google Scholar 

  • Braus DF, Brassen S (2005) Functional magnetic resonance imaging and antipsychotics. Overview and own data. Radiologe 45(2):178–185

    Article  PubMed  CAS  Google Scholar 

  • Bustillo JR, Lauriello J, Rowland LM et al (2001) Effects of chronic haloperidol and clozapine treatments on frontal and caudate neurochemistry in schizophrenia. Psychiatry Research 107:135–149

    Article  PubMed  CAS  Google Scholar 

  • Bustillo JR, Rowland LM, Jung R et al (2007) Proton magnetic resonance spectroscopy during initial treatment with antipsychotic medication in schizophrenia. Neuropsychopharmacology 33(10):2456–2466

    Article  PubMed  Google Scholar 

  • Callicott JH, Bertolino A, Egan MF et al (2000) Selective relationship between prefrontal N-acetylaspartate measures and negative symptoms in schizophrenia. American Journal of Psychiatry 157:1646–1651

    Article  PubMed  CAS  Google Scholar 

  • Chan D, Janssen J, Fox NC et al (2003) Change in rates of cerebral atrophy over time in early-onset Alzheimer’s disease: longitudinal MRI study. Lancet 362(9390):1121–1122

    Article  PubMed  Google Scholar 

  • Deakin JF, Lees J, McKie S et al (2008) Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study. Arch Gen Psychiatry 65(2):154–164

    Article  PubMed  Google Scholar 

  • DeCarli C, Frisoni GB, Clark CM et al (2007) Qualitative estimates of medial temporal atrophy as a predictor of progression from mild cognitive impairment to dementia. Arch Neurol 64:108–115

    Article  PubMed  Google Scholar 

  • Dedeoglu A, Choi JK, Cormier K et al (2004) Magnetic resonance spectroscopic analysis of Alzheimer’s disease mouse brain that express mutant human APP shows altered neurochemical profile. Brain Res 1012(1–2):60–65

    Article  PubMed  CAS  Google Scholar 

  • Definition ‘Translational Medicine’ in the internet encyclopedia Wikipedia. Accessed 26 May 2008 http://en.wikipedia.org/wiki/Translational_medicine

  • Ende G, Braus DF, Walter S et al (2000) Effects of age, medication, and illness duration on the N-acetyl aspartate signal of the anterior cingulate region in schizophrenia. Schizophr Res 41(3):389–395

    Article  PubMed  CAS  Google Scholar 

  • Ertugrul A, Uluğ B (2007) The effect of clozapine on neuroimaging findings in schizophrenia. Psychiatr Danub 19(4):367–369

    PubMed  Google Scholar 

  • Ezekiel F, Chao L, Kornak J et al (2004) Comparisons between global and focal brain atrophy rates in normal aging and Alzheimer disease: boundary shift integral versus tracing of the entorhinal cortex and hippocampus. Alzheimer Dis Assoc Disord 18(4):196–201

    PubMed  Google Scholar 

  • Fox NC, Freeborough PA (1997) Brain atrophy progression measured from registered serial MRI: validation and application to Alzheimer’s disease. J Magn Reson Imaging 7:1069–1075

    Article  PubMed  CAS  Google Scholar 

  • Fox NC, Cousens S, Scahill R et al (2000) Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects. Arch Neurol 57(3):339–344

    Article  PubMed  CAS  Google Scholar 

  • Fox NC, Schott J (2004) Imaging cerebral atrophy: normal ageing to Alzheimer’s disease. Lancet 363(9406):392–394

    Article  PubMed  Google Scholar 

  • Gozzi A, Large CH, Schwarz A et al (2008) Differential Effects of Antipsychotic and Glutamatergic Agents on the phMRI Response to Phencyclidine. Neuropsychopharmacology 33(7):1690–1703

    Article  PubMed  CAS  Google Scholar 

  • Grundman M, Petersen RC, Ferris SH et al (2004) Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch Neurol 61:59–66

    Article  PubMed  Google Scholar 

  • Higuchi M, Iwata N, Matsuba Y et al (2005) 19F and 1H MRI detection of amyloid beta plaques in vivo. Nat Neurosci 8(4):527–533

    Article  PubMed  CAS  Google Scholar 

  • Hintersteiner M, Enz A, Frey P et al (2005) In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. Nat Biotechnol 23(5):577–583

    Article  PubMed  CAS  Google Scholar 

  • Hsiao K, Chapman P, Nilsen S et al (1996) Correlative memory deficits, abeta elevation, and amyloid plaques in transgenic mice. Science 274(5284):99–103

    Article  PubMed  CAS  Google Scholar 

  • Ishizawa T, Sahara N, Ishiguro K et al (2003) Co-localization of glycogen synthase kinase-3 with neurofibrillary tangles and granulovacuolar degeneration in transgenic mice. Am J Pathol 163(3):1057–1067

    Article  PubMed  CAS  Google Scholar 

  • Jack CR Jr, Petersen RC, Xu YC et al (1997) Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49:786–794

    PubMed  Google Scholar 

  • Jack CR Jr, Petersen RC, Xu YC et al (1998) Rate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease. Neurology 51:993–999

    PubMed  Google Scholar 

  • Jack CR Jr, Slomkowski M, Gracon S et al (2003) MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD. Neurology 60(2):253–260

    PubMed  Google Scholar 

  • Jack CR Jr, Shiung MM, Gunter JL et al (2004a) Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62(4):591–600

    PubMed  Google Scholar 

  • Jack CR Jr, Garwood M, Wengenack TM et al (2004b) In vivo visualization of Alzheimer’s amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent. Magn Reson Med 52(6):1263–1271

    Article  PubMed  Google Scholar 

  • Jack CR Jr, Bernstein MA, Fox NC et al (2008a) The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging 27(4):685–691

    Article  PubMed  Google Scholar 

  • Jack CR Jr, Lowe VJ, Senjem ML et al (2008b) 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain 131(3):665–680

    Article  PubMed  Google Scholar 

  • Jensen J, Willeit M, Zipursky RB et al (2008) The formation of abnormal associations in schizophrenia: neural and behavioral evidence. Neuropsychopharmacology 33(3):473–479

    Article  PubMed  Google Scholar 

  • Johnson KA, Albert MS (2000) Perfusion abnormalities in prodromal AD. Neurobiol Aging 21(2):289–292

    Article  PubMed  CAS  Google Scholar 

  • Juckel G, Schlagenhauf F, Koslowski M et al (2006) Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage 29(2):409–416

    Article  PubMed  Google Scholar 

  • Klunk WE, Engler H, Nordberg A et al (2003) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55(3):306–319

    Article  Google Scholar 

  • Krishnan KRR, Charles HC, Doraiswamy PM et al (2003) Randomized, placebo-controlled trial of the effects of donepezil on neuronal markers and hippocampal volumes in Alzheimer’s disease. Am J Psychiatry 160:2003–2011

    Article  PubMed  Google Scholar 

  • Krystal JH, D’Souza DC, Mathalon D et al (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology 169(3–4):215–233

    Article  PubMed  CAS  Google Scholar 

  • Lahti AC, Weiler MA, Tamara Michaelidis BA et al (2001) Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 25(4):455–467

    Article  PubMed  CAS  Google Scholar 

  • Large CH (2007) Do NMDA receptor antagonist models of schizophrenia predict the clinical efficacy of antipsychotic drugs? J Psychopharmacol 21(3):283–301

    Article  PubMed  CAS  Google Scholar 

  • Lewis J, McGowan E, Rockwood J et al (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25:402–405

    Article  PubMed  CAS  Google Scholar 

  • Le Pen G, Gaudet L, Mortas P et al (2002) Deficits in reward sensitivity in a neurodevelopmental rat model of schizophrenia. Psychopharmacology 161(4):434–441

    Article  PubMed  Google Scholar 

  • Lipska BK, Weinberger DR (2000) To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23(3):223–239

    Article  PubMed  CAS  Google Scholar 

  • Littlewood CL, Jones N, O’Neill MJ et al (2006) Mapping the central effects of ketamine in the rat using pharmacological MRI. Psychopharmacology 186(1):64–81

    Article  PubMed  CAS  Google Scholar 

  • Main website of the Alzheimer’s Disease Neuroimaging Initiative. accessed May 2008 http://www.adni-info.org

  • Miller BL, Moats RA, Shonk T et al (1993) Alzheimer disease: depiction of increased cerebral myo-inositol with proton MR spectroscopy. Radiology 187(2):433–437

    PubMed  CAS  Google Scholar 

  • Mueggler T, Baumann D, Rausch M et al (2003) Age-dependent impairment of somatosensory response in the amyloid precursor protein 23 transgenic mouse model of Alzheimer’s disease. J Neurosci 23(23):8231–8236

    PubMed  CAS  Google Scholar 

  • Nordquist RE, Risterucci C, Moreau JL et al (2008) Effects of aripiprazole/OPC-14597 on motor activity, pharmacological models of psychosis, and brain activity in rats. Neuropharmacology 54(2):405–416

    Article  PubMed  CAS  Google Scholar 

  • Olbrich HM, Valerius G, Rüsch N et al (2008) Frontolimbic glutamate alterations in first episode schizophrenia: evidence from a magnetic resonance spectroscopy study. World J Biol Psychiatry 9(1):59–63

    Article  PubMed  Google Scholar 

  • Poduslo JF, Wengenack TM, Curran GL et al (2002) Molecular targeting of Alzheimer’s amyloid plaques for contrast-enhanced magnetic resonance imaging. Neurobiol Dis 11(2): 315–329

    Article  PubMed  CAS  Google Scholar 

  • Redwine JM, Kosofsky B, Jacobs RE et al (2003) Dentate gyrus volume is reduced before onset of plaque formation in PDAPP mice: a magnetic resonance microscopy and stereologic analysis. Proc Natl Acad Sci USA 100(3):1381–1386

    Article  PubMed  CAS  Google Scholar 

  • Richards JG, Higgins GA, Ouagazzal AM et al (2003) PS2APP transgenic mice, coexpressing hPS2mut and hAPPswe, show age-related cognitive deficits associated with discrete brain amyloid deposition and inflammation. J Neurosci 23(26):8989–9003

    PubMed  CAS  Google Scholar 

  • Risterucci C, Jeanneau K, Schöppenthau S et al (2005) Functional magnetic resonance imaging reveals similar brain activity changes in two different animal models of schizophrenia. Psychopharmacology 180(4):724–734

    Article  PubMed  CAS  Google Scholar 

  • Rowland LM, Bustillo JR, Mullins PG et al (2005) Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: a 4-T proton MRS study. Am J Psychiatry 162(2):394–396

    Article  PubMed  Google Scholar 

  • Scahill R, Frost C, Fox NC et al (2003) A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol 60(7):989–994

    Article  PubMed  Google Scholar 

  • Seal ML, Yücel M, Fornito A et al (2008) Abnormal white matter microstructure in schizophrenia: A voxelwise analysis of axial and radial diffusivity. Schizophr Res 101(1–3):106–110

    Article  PubMed  Google Scholar 

  • Shonk TK, Moats RA, Gifford P et al (1995) Probable Alzheimer disease: diagnosis with proton MR spectroscopy. Radiology 195(1):65–72

    PubMed  CAS  Google Scholar 

  • Szulc A, Galinska B, Tarasow E et al (2005) The effect of risperidone on metabolite measures in the frontal lobe, temporal lobe, and thalamus in schizophrenic patients. A proton magnetic resonance spectroscopy (1H MRS). Pharmacopsychiatry 38(5):214–219

    Article  PubMed  CAS  Google Scholar 

  • Tamminga CA, Thaker GK, Buchanan R et al (1992) Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch Gen Psychiatry 49(7):522–530

    PubMed  CAS  Google Scholar 

  • Taylor SF, Welsh RC, Chen AC et al (2007) Medial frontal hyperactivity in reality distortion. Biol Psychiatry 61(10):1171–1178

    Article  PubMed  Google Scholar 

  • Umbricht D, Schmid L, Koller R et al (2000) Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 57(12):1139–1147

    Article  PubMed  CAS  Google Scholar 

  • Van Broeck B, Vanhoutte G, Pirici D et al (2008) Intraneuronal amyloid beta and reduced brain volume in a novel APP T714I mouse model for Alzheimer’s disease. Neurobiol Aging 29(2):241–252

    Article  PubMed  Google Scholar 

  • Vanhoutte G, Dewachter I, Borghgraef P et al (2005) Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP(V717I) transgenic mice, a model for Alzheimer’s disease. Magn Reson Med 53(3):607–613

    Article  PubMed  CAS  Google Scholar 

  • von Kienlin M, Künnecke B, Metzger F et al (2005) Altered metabolic profile in the frontal cortex of PS2APP transgenic mice, monitored throughout their life span. Neurobiol Dis 18(1):32–39

    Article  Google Scholar 

  • Wadghiri YZ, Sigurdsson EM, Sadowski M et al (2003) Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn Reson Med 50(2):293–302

    Article  PubMed  CAS  Google Scholar 

  • Weidensteiner C, Metzger F, Bruns A et al (2009) Cortical hypoperfusion in the B6.PS2APP mouse model for Alzheimer’s disease: Comprehensive phenotyping of vascular and tissular parameters by MRI. Magn Reson Med 62(1):35–45

    Google Scholar 

  • Weiss C, Venkatasubramanian PN, Aguado AS et al (2002) Impaired eyeblink conditioning and decreased hippocampal volume in PDAPP V717F mice. Neurobiol Dis 11(3):425–433

    Article  PubMed  CAS  Google Scholar 

  • Weiss AP, Goff D, Schacter DL et al (2006) Fronto-hippocampal function during temporal context monitoring in schizophrenia. Biol Psychiatry 60(11):1268–1277

    Article  PubMed  Google Scholar 

  • Yoon JH, Minzenberg MJ, Ursu S et al (2008) Association of dorsolateral prefrontal cortex dysfunction with disrupted coordinated brain activity in schizophrenia: relationship with impaired cognition, behavioral disorganization, and global function. Am J Psychiatry 165:1006–1014

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus von Kienlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

von Kienlin, M., Risterucci, C. (2010). Translational MRI in CNS Drug Discovery. In: Borsook, D., Beccera, L., Bullmore, E., Hargreaves, R. (eds) Imaging in CNS Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0134-7_14

Download citation

Publish with us

Policies and ethics