Translational MRI in CNS Drug Discovery



Translational neuroimaging has the potential to create a more successful link between preclinical and clinical research, thereby improving the predictivity of animal models and the development of innovative therapeutics. In this review, the emphasis is on “back translation”: how can clinical imaging data be best utilized to enhance preclinical drug discovery programs? Examples selected in the fields of Alzheimer’s disease and Schizophrenia elucidate the great potential – as well as some pitfalls – of translational MRI in CNS drug discovery.


Schizophrenic Patient Blood Oxygenation Level Dependent Translational Medicine Total Brain Volume Diffusion Tensor Magnetic Resonance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anand A, Charney DS, Oren DA et al (2000) Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists. Arch Gen Psychiatry 57(3):270–276PubMedCrossRefGoogle Scholar
  2. Bartlett S (2005) MRI for in vivo detection of amyloid plaques. Lancet Neurol 4(5):276PubMedCrossRefGoogle Scholar
  3. Beckmann N, Schuler A, Mueggler T et al (2003) Age-dependent cerebrovascular abnormalities and blood flow disturbances in APP23 mice modeling Alzheimer’s disease. J Neurosci 23(24):8453–8459PubMedGoogle Scholar
  4. Benveniste H, Einstein G, Kim KR et al (1999) Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc Natl Acad Sci USA 96(24):14079–14084PubMedCrossRefGoogle Scholar
  5. Bertolino A, Callicott JH, Mattay VS et al (2001) The effect of treatment with antipsychotic drugs on brain N-acetylaspartate measures in patients with schizophrenia. Biological Psychiatry 49:39–46PubMedCrossRefGoogle Scholar
  6. Bertolino A, Roffman JL, Lipska BK et al (2002) Reduced N-acetylaspartate in prefrontal cortex of adult rats with neonatal hippocampal damage. Cereb Cortex 12(9):983–990PubMedCrossRefGoogle Scholar
  7. Bockhorst KH, Narayana PA, Liu R et al (2008) Early postnatal development of rat brain: in vivo diffusion tensor imaging. J Neurosci Res 86(7):1520–1528PubMedCrossRefGoogle Scholar
  8. Braakman N, Matysik J, van Duinen SG et al (2006) Longitudinal assessment of Alzheimer’s beta-amyloid plaque development in transgenic mice monitored by in vivo magnetic resonance microimaging. J Magn Reson Imaging 24(3):530–536PubMedCrossRefGoogle Scholar
  9. Brambilla P, Tansella M (2007) The role of white matter for the pathophysiology of schizophrenia. Int Rev Psychiatry 19(4):459–468PubMedCrossRefGoogle Scholar
  10. Braus DF, Ende G, Weber-Fahr W et al (2001) Favorable effect on neuronal viability in the anterior cingulated gyrus due to long-term treatment with atypical antipsychotics: an MRSI study. Pharmacopsychiatry 34(6):251–253PubMedGoogle Scholar
  11. Braus DF, Brassen S (2005) Functional magnetic resonance imaging and antipsychotics. Overview and own data. Radiologe 45(2):178–185PubMedCrossRefGoogle Scholar
  12. Bustillo JR, Lauriello J, Rowland LM et al (2001) Effects of chronic haloperidol and clozapine treatments on frontal and caudate neurochemistry in schizophrenia. Psychiatry Research 107:135–149PubMedCrossRefGoogle Scholar
  13. Bustillo JR, Rowland LM, Jung R et al (2007) Proton magnetic resonance spectroscopy during initial treatment with antipsychotic medication in schizophrenia. Neuropsychopharmacology 33(10):2456–2466PubMedCrossRefGoogle Scholar
  14. Callicott JH, Bertolino A, Egan MF et al (2000) Selective relationship between prefrontal N-acetylaspartate measures and negative symptoms in schizophrenia. American Journal of Psychiatry 157:1646–1651PubMedCrossRefGoogle Scholar
  15. Chan D, Janssen J, Fox NC et al (2003) Change in rates of cerebral atrophy over time in early-onset Alzheimer’s disease: longitudinal MRI study. Lancet 362(9390):1121–1122PubMedCrossRefGoogle Scholar
  16. Deakin JF, Lees J, McKie S et al (2008) Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study. Arch Gen Psychiatry 65(2):154–164PubMedCrossRefGoogle Scholar
  17. DeCarli C, Frisoni GB, Clark CM et al (2007) Qualitative estimates of medial temporal atrophy as a predictor of progression from mild cognitive impairment to dementia. Arch Neurol 64:108–115PubMedCrossRefGoogle Scholar
  18. Dedeoglu A, Choi JK, Cormier K et al (2004) Magnetic resonance spectroscopic analysis of Alzheimer’s disease mouse brain that express mutant human APP shows altered neurochemical profile. Brain Res 1012(1–2):60–65PubMedCrossRefGoogle Scholar
  19. Definition ‘Translational Medicine’ in the internet encyclopedia Wikipedia. Accessed 26 May 2008
  20. Ende G, Braus DF, Walter S et al (2000) Effects of age, medication, and illness duration on the N-acetyl aspartate signal of the anterior cingulate region in schizophrenia. Schizophr Res 41(3):389–395PubMedCrossRefGoogle Scholar
  21. Ertugrul A, Uluğ B (2007) The effect of clozapine on neuroimaging findings in schizophrenia. Psychiatr Danub 19(4):367–369PubMedGoogle Scholar
  22. Ezekiel F, Chao L, Kornak J et al (2004) Comparisons between global and focal brain atrophy rates in normal aging and Alzheimer disease: boundary shift integral versus tracing of the entorhinal cortex and hippocampus. Alzheimer Dis Assoc Disord 18(4):196–201PubMedGoogle Scholar
  23. Fox NC, Freeborough PA (1997) Brain atrophy progression measured from registered serial MRI: validation and application to Alzheimer’s disease. J Magn Reson Imaging 7:1069–1075PubMedCrossRefGoogle Scholar
  24. Fox NC, Cousens S, Scahill R et al (2000) Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects. Arch Neurol 57(3):339–344PubMedCrossRefGoogle Scholar
  25. Fox NC, Schott J (2004) Imaging cerebral atrophy: normal ageing to Alzheimer’s disease. Lancet 363(9406):392–394PubMedCrossRefGoogle Scholar
  26. Gozzi A, Large CH, Schwarz A et al (2008) Differential Effects of Antipsychotic and Glutamatergic Agents on the phMRI Response to Phencyclidine. Neuropsychopharmacology 33(7):1690–1703PubMedCrossRefGoogle Scholar
  27. Grundman M, Petersen RC, Ferris SH et al (2004) Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch Neurol 61:59–66PubMedCrossRefGoogle Scholar
  28. Higuchi M, Iwata N, Matsuba Y et al (2005) 19F and 1H MRI detection of amyloid beta plaques in vivo. Nat Neurosci 8(4):527–533PubMedCrossRefGoogle Scholar
  29. Hintersteiner M, Enz A, Frey P et al (2005) In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. Nat Biotechnol 23(5):577–583PubMedCrossRefGoogle Scholar
  30. Hsiao K, Chapman P, Nilsen S et al (1996) Correlative memory deficits, abeta elevation, and amyloid plaques in transgenic mice. Science 274(5284):99–103PubMedCrossRefGoogle Scholar
  31. Ishizawa T, Sahara N, Ishiguro K et al (2003) Co-localization of glycogen synthase kinase-3 with neurofibrillary tangles and granulovacuolar degeneration in transgenic mice. Am J Pathol 163(3):1057–1067PubMedCrossRefGoogle Scholar
  32. Jack CR Jr, Petersen RC, Xu YC et al (1997) Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49:786–794PubMedGoogle Scholar
  33. Jack CR Jr, Petersen RC, Xu YC et al (1998) Rate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease. Neurology 51:993–999PubMedGoogle Scholar
  34. Jack CR Jr, Slomkowski M, Gracon S et al (2003) MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD. Neurology 60(2):253–260PubMedGoogle Scholar
  35. Jack CR Jr, Shiung MM, Gunter JL et al (2004a) Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62(4):591–600PubMedGoogle Scholar
  36. Jack CR Jr, Garwood M, Wengenack TM et al (2004b) In vivo visualization of Alzheimer’s amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent. Magn Reson Med 52(6):1263–1271PubMedCrossRefGoogle Scholar
  37. Jack CR Jr, Bernstein MA, Fox NC et al (2008a) The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging 27(4):685–691PubMedCrossRefGoogle Scholar
  38. Jack CR Jr, Lowe VJ, Senjem ML et al (2008b) 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain 131(3):665–680PubMedCrossRefGoogle Scholar
  39. Jensen J, Willeit M, Zipursky RB et al (2008) The formation of abnormal associations in schizophrenia: neural and behavioral evidence. Neuropsychopharmacology 33(3):473–479PubMedCrossRefGoogle Scholar
  40. Johnson KA, Albert MS (2000) Perfusion abnormalities in prodromal AD. Neurobiol Aging 21(2):289–292PubMedCrossRefGoogle Scholar
  41. Juckel G, Schlagenhauf F, Koslowski M et al (2006) Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage 29(2):409–416PubMedCrossRefGoogle Scholar
  42. Klunk WE, Engler H, Nordberg A et al (2003) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55(3):306–319CrossRefGoogle Scholar
  43. Krishnan KRR, Charles HC, Doraiswamy PM et al (2003) Randomized, placebo-controlled trial of the effects of donepezil on neuronal markers and hippocampal volumes in Alzheimer’s disease. Am J Psychiatry 160:2003–2011PubMedCrossRefGoogle Scholar
  44. Krystal JH, D’Souza DC, Mathalon D et al (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology 169(3–4):215–233PubMedCrossRefGoogle Scholar
  45. Lahti AC, Weiler MA, Tamara Michaelidis BA et al (2001) Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 25(4):455–467PubMedCrossRefGoogle Scholar
  46. Large CH (2007) Do NMDA receptor antagonist models of schizophrenia predict the clinical efficacy of antipsychotic drugs? J Psychopharmacol 21(3):283–301PubMedCrossRefGoogle Scholar
  47. Lewis J, McGowan E, Rockwood J et al (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25:402–405PubMedCrossRefGoogle Scholar
  48. Le Pen G, Gaudet L, Mortas P et al (2002) Deficits in reward sensitivity in a neurodevelopmental rat model of schizophrenia. Psychopharmacology 161(4):434–441PubMedCrossRefGoogle Scholar
  49. Lipska BK, Weinberger DR (2000) To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23(3):223–239PubMedCrossRefGoogle Scholar
  50. Littlewood CL, Jones N, O’Neill MJ et al (2006) Mapping the central effects of ketamine in the rat using pharmacological MRI. Psychopharmacology 186(1):64–81PubMedCrossRefGoogle Scholar
  51. Main website of the Alzheimer’s Disease Neuroimaging Initiative. accessed May 2008
  52. Miller BL, Moats RA, Shonk T et al (1993) Alzheimer disease: depiction of increased cerebral myo-inositol with proton MR spectroscopy. Radiology 187(2):433–437PubMedGoogle Scholar
  53. Mueggler T, Baumann D, Rausch M et al (2003) Age-dependent impairment of somatosensory response in the amyloid precursor protein 23 transgenic mouse model of Alzheimer’s disease. J Neurosci 23(23):8231–8236PubMedGoogle Scholar
  54. Nordquist RE, Risterucci C, Moreau JL et al (2008) Effects of aripiprazole/OPC-14597 on motor activity, pharmacological models of psychosis, and brain activity in rats. Neuropharmacology 54(2):405–416PubMedCrossRefGoogle Scholar
  55. Olbrich HM, Valerius G, Rüsch N et al (2008) Frontolimbic glutamate alterations in first episode schizophrenia: evidence from a magnetic resonance spectroscopy study. World J Biol Psychiatry 9(1):59–63PubMedCrossRefGoogle Scholar
  56. Poduslo JF, Wengenack TM, Curran GL et al (2002) Molecular targeting of Alzheimer’s amyloid plaques for contrast-enhanced magnetic resonance imaging. Neurobiol Dis 11(2): 315–329PubMedCrossRefGoogle Scholar
  57. Redwine JM, Kosofsky B, Jacobs RE et al (2003) Dentate gyrus volume is reduced before onset of plaque formation in PDAPP mice: a magnetic resonance microscopy and stereologic analysis. Proc Natl Acad Sci USA 100(3):1381–1386PubMedCrossRefGoogle Scholar
  58. Richards JG, Higgins GA, Ouagazzal AM et al (2003) PS2APP transgenic mice, coexpressing hPS2mut and hAPPswe, show age-related cognitive deficits associated with discrete brain amyloid deposition and inflammation. J Neurosci 23(26):8989–9003PubMedGoogle Scholar
  59. Risterucci C, Jeanneau K, Schöppenthau S et al (2005) Functional magnetic resonance imaging reveals similar brain activity changes in two different animal models of schizophrenia. Psychopharmacology 180(4):724–734PubMedCrossRefGoogle Scholar
  60. Rowland LM, Bustillo JR, Mullins PG et al (2005) Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: a 4-T proton MRS study. Am J Psychiatry 162(2):394–396PubMedCrossRefGoogle Scholar
  61. Scahill R, Frost C, Fox NC et al (2003) A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol 60(7):989–994PubMedCrossRefGoogle Scholar
  62. Seal ML, Yücel M, Fornito A et al (2008) Abnormal white matter microstructure in schizophrenia: A voxelwise analysis of axial and radial diffusivity. Schizophr Res 101(1–3):106–110PubMedCrossRefGoogle Scholar
  63. Shonk TK, Moats RA, Gifford P et al (1995) Probable Alzheimer disease: diagnosis with proton MR spectroscopy. Radiology 195(1):65–72PubMedGoogle Scholar
  64. Szulc A, Galinska B, Tarasow E et al (2005) The effect of risperidone on metabolite measures in the frontal lobe, temporal lobe, and thalamus in schizophrenic patients. A proton magnetic resonance spectroscopy (1H MRS). Pharmacopsychiatry 38(5):214–219PubMedCrossRefGoogle Scholar
  65. Tamminga CA, Thaker GK, Buchanan R et al (1992) Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch Gen Psychiatry 49(7):522–530PubMedGoogle Scholar
  66. Taylor SF, Welsh RC, Chen AC et al (2007) Medial frontal hyperactivity in reality distortion. Biol Psychiatry 61(10):1171–1178PubMedCrossRefGoogle Scholar
  67. Umbricht D, Schmid L, Koller R et al (2000) Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 57(12):1139–1147PubMedCrossRefGoogle Scholar
  68. Van Broeck B, Vanhoutte G, Pirici D et al (2008) Intraneuronal amyloid beta and reduced brain volume in a novel APP T714I mouse model for Alzheimer’s disease. Neurobiol Aging 29(2):241–252PubMedCrossRefGoogle Scholar
  69. Vanhoutte G, Dewachter I, Borghgraef P et al (2005) Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP(V717I) transgenic mice, a model for Alzheimer’s disease. Magn Reson Med 53(3):607–613PubMedCrossRefGoogle Scholar
  70. von Kienlin M, Künnecke B, Metzger F et al (2005) Altered metabolic profile in the frontal cortex of PS2APP transgenic mice, monitored throughout their life span. Neurobiol Dis 18(1):32–39CrossRefGoogle Scholar
  71. Wadghiri YZ, Sigurdsson EM, Sadowski M et al (2003) Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn Reson Med 50(2):293–302PubMedCrossRefGoogle Scholar
  72. Weidensteiner C, Metzger F, Bruns A et al (2009) Cortical hypoperfusion in the B6.PS2APP mouse model for Alzheimer’s disease: Comprehensive phenotyping of vascular and tissular parameters by MRI. Magn Reson Med 62(1):35–45Google Scholar
  73. Weiss C, Venkatasubramanian PN, Aguado AS et al (2002) Impaired eyeblink conditioning and decreased hippocampal volume in PDAPP V717F mice. Neurobiol Dis 11(3):425–433PubMedCrossRefGoogle Scholar
  74. Weiss AP, Goff D, Schacter DL et al (2006) Fronto-hippocampal function during temporal context monitoring in schizophrenia. Biol Psychiatry 60(11):1268–1277PubMedCrossRefGoogle Scholar
  75. Yoon JH, Minzenberg MJ, Ursu S et al (2008) Association of dorsolateral prefrontal cortex dysfunction with disrupted coordinated brain activity in schizophrenia: relationship with impaired cognition, behavioral disorganization, and global function. Am J Psychiatry 165:1006–1014PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Neuroscience, F. Hoffmann-La Roche AGBaselSwitzerland

Personalised recommendations