Skip to main content

Application of Nanobiotechnology in Cancer Therapeutics

  • Chapter
  • First Online:

Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer-length scale, i.e., at the level of atoms, molecules, and supramolecular structures. Nanotechnology, as defined by the National Nanotechnology Initiative (http://www.nano.gov/), is the understanding and control of matter at dimensions of roughly 1–100 nm, where unique phenomena enable novel applications. During the past few years, considerable progress has been made in the application of nanobiotechnology in cancer, i.e. nanooncology, which is currently the most important chapter of nanomedicine [1,2]. Other publications have covered applications of nanobiotechnology in diagnostics [3], drug discovery [4], and drug delivery [5]. Several drugs in development for cancer are based on nanotechnology and a few of these are already approved. Nanotechnology-based devices are in development as aids to cancer surgery. Some of the recent development in nanotechnologies and their applications in diagnosing and developing cancer therapies are reviewed in this chapter. The impact of nanobiotechnology on oncology is shown schematically in Fig. 1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jain KK. A Handbook of Nanomedicine. Humana/Springer, Totowa, NJ, 2008.

    Google Scholar 

  2. Jain KK. Recent Advances in Nanooncology. Technol Cancer Res Treat 2008; 7: 1–13.

    PubMed  CAS  Google Scholar 

  3. Jain KK. Applications of Nanobiotechnology in Clinical Diagnostics. Clin Chem 2007; 53: 2002–2009.

    Article  PubMed  CAS  Google Scholar 

  4. Jain KK. Role of nanobiotechnology in drug discovery. In: Guzman CA, Feuerstein G (eds) Pharmaceutical Biotechnology. Austin, TX, Landes Press, 2009.

    Google Scholar 

  5. Jain KK. Nanotechnology-based drug delivery for cancer. Technol Cancer Res Treat 2005; 4: 407–416.

    PubMed  CAS  Google Scholar 

  6. Jain KK. Cancer Biomarkers: Current issues and future directions. Curr Opin Mol Ther 2007; 9: 563–571.

    PubMed  CAS  Google Scholar 

  7. Zheng G, Patolsky F, Cui Y, et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 2005; 23: 1294–1301.

    Article  PubMed  CAS  Google Scholar 

  8. Singer EM, Smith SS. Nucleoprotein Assemblies for Cellular Biomarker Detection. Nano Lett 2006; 6: 1184–1189.

    Article  PubMed  CAS  Google Scholar 

  9. Jain KK. Nanobiotechnology: Applications, Markets and Companies. Basel, Jain PharmaBiotech, 2009.

    Google Scholar 

  10. Zharov VP, Galitovskaya EN, Johnson C, Kelly T. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy. Lasers Surg Med 2005; 37: 219–226.

    Article  PubMed  Google Scholar 

  11. Li J, Wang X, Wang C, et al. The enhancement effect of gold nanoparticles in drug delivery and as biomarkers of drug-resistant cancer cells. ChemMedChem 2007; 2: 374–378.

    Article  PubMed  CAS  Google Scholar 

  12. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 2008c May 1; doi:10.1021/ar7002804.

    Google Scholar 

  13. Wu Q, Cao H, Luan Q, et al. Biomolecule-assisted synthesis of water-soluble silver nanoparticles and their biomedical applications. Inorg Chem 2008; 47: 5882–5888.

    Google Scholar 

  14. Bagalkot V, Zhang L, Levy-Nissenbaum E, et al. Quantum Dot-Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer. Nano Lett 2007; 7: 3065–3070.

    Article  PubMed  CAS  Google Scholar 

  15. Yu X, Munge B, Patel V, et al. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc 2006; 128: 11199–11205.

    Article  PubMed  CAS  Google Scholar 

  16. Bianco A, Kostarelos K, Prato M. Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Expert Opin Drug Deliv 2008; 5: 331–342.

    Article  PubMed  CAS  Google Scholar 

  17. Hampel S, Kunze D, Haase D, et al. Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine 2008; 3: 175–182.

    Article  PubMed  CAS  Google Scholar 

  18. Reddy GR, Bhojani MS, McConville P, et al. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 2006; 12: 6677–6686.

    Article  PubMed  CAS  Google Scholar 

  19. Simberg D, Duza T, Park JH, et al. Biomimetic amplification of nanoparticle homing to tumors. Proc Natl Acad Sci 2007; 104: 932–936.

    Article  PubMed  Google Scholar 

  20. Rabin O, Manuel Perez J, Grimm J. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 2006; 5: 118–122.

    Article  PubMed  CAS  Google Scholar 

  21. Gao D, Xu H, Philbert MA, et al. Ultrafine Hydrogel Nanoparticles: Synthetic Approach and Therapeutic Application in Living Cells. Angew Chem Int Ed Engl 2007; 46: 2224–2227.

    Article  PubMed  CAS  Google Scholar 

  22. Choi J, Jun Y, Yeon S, et al. Biocompatible Heterostructured Nanoparticles for Multimodal Biological Detection. JACS 2006; 128: 5982–15983.

    Google Scholar 

  23. Talanov VS, Regino CA, Kobayashi H, et al. Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett 2006; 6: 1459–1463.

    Article  PubMed  CAS  Google Scholar 

  24. Koster DA, Palle K, Bot ES, et al. Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature 2007; 448: 213–217.

    Article  PubMed  CAS  Google Scholar 

  25. Roovers RC, Laeremans T, Huang L, et al. Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EFGR Nanobodies. Cancer Immunol Immunother 2007; 56: 303–317.

    Article  PubMed  CAS  Google Scholar 

  26. Gao X, Dave SR. Quantum dots for cancer molecular imaging. Adv Exp Med Biol 2007; 620: 57–73.

    Article  PubMed  Google Scholar 

  27. Koo OM, Rubinstein I, Onyuksel H. Camptothecin in sterically stabilized phospholipid nano-micelles: A novel solvent pH change solubilization method. J Nanosci Nanotechnol 2006; 6: 2996–3000.

    Article  PubMed  CAS  Google Scholar 

  28. Geng Y, Dalhaimer P, Cai S, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotech 2007; 2: 249–255.

    Article  CAS  Google Scholar 

  29. Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized Micellar Systems for Cancer Targeted Drug Delivery. Pharmaceutical Res 2007; 24: 1029–1046.

    Article  CAS  Google Scholar 

  30. Lu J, Liong M, Zink JI, Tamanoi F. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 2007; 3: 1341–1346.

    Article  PubMed  CAS  Google Scholar 

  31. MacDiarmid JA, Mugridge NB, Weiss JC, et al. Bacterially Derived 400 nm Particles for Encapsulation and Cancer Cell Targeting of Chemotherapeutics. Cancer Cell 2007; 11: 431–445.

    Article  PubMed  CAS  Google Scholar 

  32. Wagner E. Programmed drug delivery: Nanosystems for tumor targeting. Expert Opin Biol Ther 2007; 7: 587–593.

    Article  PubMed  CAS  Google Scholar 

  33. Radosz M, Shen Y, Tang H. Nanoparticles for Cytoplasmic Drug Delivery to Cancer Cells. Patent #WO/2007/001356, Publication Date 4 January 2007.

    Google Scholar 

  34. Lee CC, Gillies ER, Fox ME. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci 2006; 103: 16649–16654.

    Article  PubMed  CAS  Google Scholar 

  35. McDevitt MR, Chattopadhyay D, Kappel BJ, et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 2007; 48: 1180–1189.

    Article  PubMed  CAS  Google Scholar 

  36. Ashcroft JM, Tsyboulski DA, Hartman KB, et al. Fullerene (C60) immunoconjugates: Interaction of water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody. Chem Commun 2006; 28: 3004–3006.

    Article  Google Scholar 

  37. Kano MR, Bae Y, Iwata C, et al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-{beta} signaling. Proc Natl Acad Sci 2007; 104: 3460–3465.

    Article  PubMed  CAS  Google Scholar 

  38. Qian X, Peng XH, Ansari DO, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotech 2008; 26: 83–90.

    Article  CAS  Google Scholar 

  39. Jia N, Lian Q, Shen H, et al. Intracellular delivery of quantum dots tagged antisense oligodeoxynucleotides by functionalized multiwalled carbon nanotubes. Nano Lett 2007; 7: 2976–2980.

    Article  PubMed  CAS  Google Scholar 

  40. Liu Z, Chen K, Davis C, et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 2008; 68: 6652–6660.

    Article  PubMed  CAS  Google Scholar 

  41. Murakami T, Sawada H, Tamura G, et al. Water-dispersed single-wall carbon nanohorns as drug carriers for local cancer chemotherapy. Nanomed 2008; 3: 453–463.

    Article  CAS  Google Scholar 

  42. Ahmed F, Pakunlu RI, Srinivas G, et al. Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol Pharm 2006; 3: 340–350.

    Article  PubMed  CAS  Google Scholar 

  43. Bertin PA, Gibbs JM, Shen CK, et al. Multifunctional polymeric nanoparticles from diverse bioactive agents. J Am Chem Soc 2006; 128: 4168–4169.

    Article  PubMed  CAS  Google Scholar 

  44. Peng W, Anderson DG, Bao Y, et al. Nanoparticulate delivery of suicide DNA to murine prostate and prostate tumors. Prostate 2007; 67: 855–862.

    Article  PubMed  CAS  Google Scholar 

  45. Jain KK. Use of nanoparticles for drug delivery in glioblastoma multiforme. Expert Rev Neurother 2007; 7: 363–372.

    Article  PubMed  CAS  Google Scholar 

  46. van Vlerken LE, Duan Z, Seiden MV, Amiji MM. Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. Cancer Res 2007; 67: 4843–4850.

    Article  PubMed  Google Scholar 

  47. Cinteza LO, Ohulchanskyy TY, Sahoo Y, et al. Diacyllipid Micelle-Based Nanocarrier for Magnetically Guided Delivery of Drugs in Photodynamic Therapy. Mol Pharm 2006; 3: 415–423.

    Article  PubMed  CAS  Google Scholar 

  48. Ohulchanskyy TY, Roy I, Goswami LN, Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Lett 2007; 7: 2835–2842.

    Article  PubMed  CAS  Google Scholar 

  49. Rapoport N, Gao Z, Kennedy A. Multifunctional Nanoparticles for Combining Ultrasonic Tumor Imaging and Targeted Chemotherapy. J Natl Cancer Inst 2007; 99: 1095–1106.

    Article  PubMed  CAS  Google Scholar 

  50. Johannsen M, Gneveckow U, Thiesen B, et al. Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 2007; 52: 1653–1661.

    Article  PubMed  Google Scholar 

  51. Lehmann J, Natarajan A, Denardo GL, et al. Short communication: nanoparticle thermotherapy and external beam radiation therapy for human prostate cancer cells. Cancer Biother Radiopharm 2008; 23: 265–271.

    Article  PubMed  CAS  Google Scholar 

  52. Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006; 128: 2115–2120.

    Article  PubMed  CAS  Google Scholar 

  53. Everts M. Thermal scalpel to target cancer. Expert Rev Med Devices 2007; 4: 131–136.

    Article  PubMed  Google Scholar 

  54. Tomalia DA, Reyna LA, Svenson S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 2007; 35: 61–67.

    Article  PubMed  CAS  Google Scholar 

  55. Robe A, Pic E, Lassalle HP, et al. Quantum dots in axillary lymph node mapping: Biodistribution study in healthy mice. BMC Cancer 2008; 8: 111.

    Article  PubMed  Google Scholar 

  56. Wang P, Jia L, Sanders BG, Kline K. Liposomal or nanoparticle alpha-TEA reduced 66 cl-4 murine mammary cancer burden and metastasis. Drug Deliv 2007; 14: 497–505.

    Article  PubMed  CAS  Google Scholar 

  57. Gordon EM, Levy JP, Reed RA, et al. Targeting metastatic cancer from the inside: A new generation of targeted gene delivery vectors enables personalized cancer vaccination in situ. Int J Oncol 2008; 33: 665–675.

    PubMed  CAS  Google Scholar 

  58. Jain KK. Role of nanobiotechnology in developing personalized medicine for cancer. Technol Cancer Res Treat 2005; 4: 645–650.

    PubMed  CAS  Google Scholar 

  59. Takeda M, Tada H, Higuchi H, et al. In vivo single molecular imaging and sentinel node navigation by nanotechnology for molecular targeting drug-delivery systems and tailor-made medicine. Breast Cancer 2008; 15: 145–152.

    Article  PubMed  Google Scholar 

  60. Sakamoto J, Annapragada A, Decuzzi P, Ferrari M. Antibiological barrier nanovector technology for cancer applications. Expert Opin Drug Deliv 2007; 4: 359–369.

    Article  PubMed  CAS  Google Scholar 

  61. Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology Applications in Cancer. Annu Rev Biomed Eng 2007; 9: 12.1–12.32.

    Article  Google Scholar 

  62. Zhang H, Yee D, Wang C. Quantum dots for cancer diagnosis and therapy: Biological and clinical perspectives. Nanomedicine 2008; 3: 83–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jain, K.K. (2009). Application of Nanobiotechnology in Cancer Therapeutics. In: Lu, Y., Mahato, R. (eds) Pharmaceutical Perspectives of Cancer Therapeutics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0131-6_8

Download citation

Publish with us

Policies and ethics