Skip to main content

Pharmaceutical Perspectives of Cancer Therapeutics: Current Therapeutic Uses of Monoclonal Antibodies

  • Chapter
  • First Online:
Pharmaceutical Perspectives of Cancer Therapeutics

Few cancer therapies have attracted the level of interest given to monoclonal antibodies. These drugs, first approved for cancer treatment in the late 1990s, provide unprecedented target specificity. In so doing, they have begun to fulfill the concept put forth by Paul Ehrlich over 100 years earlier—a “magic bullet” that kills cancer, but does not harm normal tissues [1]. The production of monoclonal antibodies has captured the public’s awe and appreciation. The hybridoma technique, which entails the fusion of mouse and human cells into antibody “factories,” exemplifies the clinical benefits of biologic research. Perhaps most importantly, monoclonal antibodies offer the promise of effective cancer treatment, without the toxicities associated with conventional chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strebhardt K, Ullrich A. Paul Ehrlich's magic bullet concept: 100 years of progress. Nature Reviews Cancer 2008; 8: 473–480.

    Article  PubMed  CAS  Google Scholar 

  2. Coiffier B et al. CHOP Chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. The New England Journal of Medicine 2002; 346: 235–242.

    Article  PubMed  CAS  Google Scholar 

  3. Romond EH et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. The New England Journal of Medicine 2005; 353: 1673–1684.

    Article  PubMed  CAS  Google Scholar 

  4. Antonia S et al. Natural history of diarrhea associated with the anti-CTLA4 monoclonal antibody CP-675,206. Journal of Clinical Oncology (Meeting Abstracts) 2007; 25: 3038.

    Google Scholar 

  5. Sheridan C. TeGenero fiasco prompts regulatory rethink. Nature Biotechnology 2006; 24: 475–476.

    Article  PubMed  CAS  Google Scholar 

  6. Kolata G, Adrew P. Costly cancer drug offers hope, but also a dilemma. New York Times 6 July 2008: A1.

    Google Scholar 

  7. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256: 495–497.

    Article  PubMed  Google Scholar 

  8. Oldham RK. Monoclonal antibodies in cancer therapy. Journal of Clinical Oncology 1983; 1: 582–590.

    PubMed  CAS  Google Scholar 

  9. Oldham RK, Dillman RO. Monoclonal antibodies in cancer therapy: 25 years of progress. Journal of Clinical Oncology 2008; 26: 1774–1777.

    Article  PubMed  Google Scholar 

  10. Dillman RO. Toxicities and side effects associated with intravenous infusions of murine monoclonal antibodies. Journal of Biological Response Modifiers 1986; 5: 73–84.

    PubMed  CAS  Google Scholar 

  11. Nadler LM et al. Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen. Cancer Research 1980; 40: 3147–3154.

    PubMed  CAS  Google Scholar 

  12. Dillman RO et al. Murine monoclonal antibody therapy in two patients with chronic lymphocytic leukemia. Blood 1982; 59: 1036–1045.

    PubMed  CAS  Google Scholar 

  13. Ritz J, Schlossman SF. Utilization of monoclonal antibodies in the treatment of leukemia and lymphoma. Blood 1982; 59: 1–11.

    PubMed  CAS  Google Scholar 

  14. Miller RA, Maloney DG, McKillop J, Levy R. In vivo effects of murine hybridoma monoclonal antibody in a patient with T-cell leukemia. Blood 1981; 58: 78–86.

    PubMed  CAS  Google Scholar 

  15. Houghton AN et al. Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: a phase I trial in patients with malignant melanoma. Proceedings of the National Academy of Sciences of the United States of America 1985; 82: 1242–1246.

    Article  PubMed  CAS  Google Scholar 

  16. Boulianne GL, Hozumi N, Shulman MJ. Production of functional chimaeric mouse/human antibody. Nature 1984; 312: 643–646.

    Article  PubMed  CAS  Google Scholar 

  17. Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. Nature 1988; 332: 323–327.

    Article  PubMed  CAS  Google Scholar 

  18. Maloney DG et al. Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 1994; 84: 2457–2466.

    PubMed  CAS  Google Scholar 

  19. Carter P et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proceedings of the National Academy of Sciences of the United States of America 1992; 89: 4285–4289.

    Article  PubMed  CAS  Google Scholar 

  20. Sievers EL et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 1999; 93: 3678–3684.

    PubMed  CAS  Google Scholar 

  21. Kaminski MS et al. Radioimmunotherapy of B-cell lymphoma with [131I]anti-B1 (anti-CD20) antibody. The New England Journal of Medicine 1993; 329: 459–465.

    Article  PubMed  CAS  Google Scholar 

  22. Knox SJ et al. Yttrium-90-labeled anti-CD20 monoclonal antibody therapy of recurrent B-cell lymphoma. Clinical Cancer Research 1996; 2: 457–470.

    PubMed  CAS  Google Scholar 

  23. Strome SE, Sausville EA, Mann D. A mechanistic perspective of monoclonal antibodies in cancer therapy beyond target-related effects. Oncologist 2007; 12: 1084–1095.

    Article  PubMed  CAS  Google Scholar 

  24. Nimmerjahn F, Ravetch JV. Divergent immunoglobulin G subclass activity through selective Fc receptor binding. Science 2005; 310: 1510–1512.

    Article  PubMed  CAS  Google Scholar 

  25. Morell A, Terry W, Waldmann T. Metabolic properties of IgG subclasses in man. Journal of Clinical Investigation 1970; 49: 673–680.

    Article  PubMed  CAS  Google Scholar 

  26. Reichert JM, Valge-Archer VE. Development trends for monoclonal antibody cancer therapeutics. Nature Reviews Drug Discovery 2007; 6: 349–356.

    Article  PubMed  CAS  Google Scholar 

  27. Loo L, Robinson MK, Adams GP. Antibody engineering principles and applications. Cancer Journal 2008; 14: 149–153.

    Article  CAS  Google Scholar 

  28. Colcher D et al. Pharmacokinetics and biodistribution of genetically-engineered antibodies. QJ Nuclear Medicine 1998; 42: 225–241.

    CAS  Google Scholar 

  29. Martens T et al. A novel one-armed anti-c-met antibody inhibits glioblastoma growth in vivo. Clinical Cancer Research 2006; 12: 6144–6152.

    Article  PubMed  CAS  Google Scholar 

  30. Wochner RD, Strober W, Waldmann TA. The role of the kidney in the catabolism of bence jones proteins and immunoglobulin fragments. Journal of Experimental Medicine 1967; 126: 207–221.

    Article  PubMed  CAS  Google Scholar 

  31. Sharkey RM, Goldenberg DM. Targeted therapy of cancer: new prospects for antibodies and immunoconjugates. CA Cancer Journal for Clinicians 2006; 56: 226–243.

    Article  Google Scholar 

  32. Mechetner E. Development and Characterization of Mouse Hybridomas Monocolonal Antibodies. Ed. Maher Albitar. SpringerLink: New York, 2007, pp. 1–13.

    Google Scholar 

  33. Hoogenboom HR et al. Antibody phage display technology and its applications. Immunotechnology 1998; 4: 1–20.

    Article  PubMed  CAS  Google Scholar 

  34. McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 1990; 348: 552–554.

    Article  PubMed  CAS  Google Scholar 

  35. Donzeau M, Knappik A. Recombinant Monoclonal Antibodies Monocolonal Antibodies. Ed. Maher Albitar. SpringerLink: New York, 2007, pp. 15–31.

    Google Scholar 

  36. Yang X-D et al. Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Critical Reviews in Oncology/Hematology 2001; 38: 17–23.

    Article  PubMed  CAS  Google Scholar 

  37. Masui H, Moroyama T, Mendelsohn J. Mechanism of antitumor activity in mice for anti-epidermal growth factor receptor monoclonal antibodies with different isotypes. Cancer Research 1986; 46: 5592–5598.

    PubMed  CAS  Google Scholar 

  38. McKillop D et al. Metabolism and enantioselective pharmacokinetics of Casodex in man. Xenobiotica 1993; 23: 1241–1253.

    Article  PubMed  CAS  Google Scholar 

  39. Hudis CA. Trastuzumab – mechanism of action and use in clinical practice. The New England Journal of Medicine 2007; 357: 39–51.

    Article  PubMed  CAS  Google Scholar 

  40. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nature Biotechnology 2005; 23: 1147–1157.

    Article  PubMed  CAS  Google Scholar 

  41. Desjarlais JR, Lazar GA, Zhukovsky EA, Chu SY. Optimizing engagement of the immune system by anti-tumor antibodies: an engineer's perspective. Drug Discovery Today 2007; 12: 898–910.

    Article  PubMed  CAS  Google Scholar 

  42. Iannello A, Ahmad A. Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer and Metastasis Reviews 2005; 24: 487–499.

    Article  PubMed  CAS  Google Scholar 

  43. Steplewski Z, Lubeck MD, Koprowski H. Human macrophages armed with murine immunoglobulin G2a antibodies to tumors destroy human cancer cells. Science 1983; 221: 865–867.

    Article  PubMed  CAS  Google Scholar 

  44. van Ojik HH et al. CpG-A and B Oligodeoxynucleotides enhance the efficacy of antibody therapy by activating different effector cell populations. Cancer Research 2003; 63: 5595–5600.

    PubMed  Google Scholar 

  45. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nature Medicine 2000; 6: 443–446.

    Article  PubMed  CAS  Google Scholar 

  46. Shields RL et al. High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and Design of IgG1 variants with improved binding to the FcγR. Journal of Biologic Chemistry 2001; 276: 6591–6604.

    Article  CAS  Google Scholar 

  47. Cartron G et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood 2002; 99: 754–758.

    Article  PubMed  CAS  Google Scholar 

  48. Weng W-K, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. Journal of Clinical Oncology 2003; 21: 3940–3947.

    Article  PubMed  CAS  Google Scholar 

  49. Treon SP et al. Polymorphisms in FcγRIIIA (CD16) receptor expression are associated with clinical response to rituximab in Waldenstrom's macroglobulinemia. Journal of Clinical Oncology 2005; 23: 474–481.

    Article  PubMed  CAS  Google Scholar 

  50. Bowles JA et al. Anti-CD20 monoclonal antibody with enhanced affinity for CD16 activates NK cells at lower concentrations and more effectively than rituximab. Blood 2006; 108: 2648–2654.

    Article  PubMed  CAS  Google Scholar 

  51. Galon J et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313: 1960–1964.

    Article  PubMed  CAS  Google Scholar 

  52. Di Gaetano N et al. Complement activation determines the therapeutic activity of rituximab in vivo. Journal of Immunology 2003; 171: 1581–1587.

    Google Scholar 

  53. Cheson BD. Radioimmunotherapy of non-Hodgkin lymphomas. Blood 2003; 101: 391–398.

    Article  PubMed  CAS  Google Scholar 

  54. Walker S et al. Cleavage behavior of calicheamicin gamma 1 and calicheamicin T. Proceedings of the National Academy of Sciences of the United States of America 1992; 89: 4608–4612.

    Article  PubMed  CAS  Google Scholar 

  55. Ricart AD, Tolcher AW. Technology Insight: cytotoxic drug immunoconjugates for cancer therapy. Nature Clinical Practice Oncology 2007; 4: 245–255.

    Article  PubMed  CAS  Google Scholar 

  56. Bagshawe K. Antibody directed enzymes revive anti-cancer prodrugs concept. British Journal of Cancer 1987; 56: 531–532.

    Article  PubMed  CAS  Google Scholar 

  57. Senter PD et al. Anti-tumor effects of antibody-alkaline phosphatase conjugates in combination with etoposide phosphate. Proceedings of the National Academy of Sciences of the United States of America 1988; 85: 4842–4846.

    Article  PubMed  CAS  Google Scholar 

  58. Kratz F, Müller Ivonne A, Ryppa C, Warnecke A. Prodrug strategies in anticancer chemotherapy. ChemMedChem 2008; 3: 20–53.

    Article  PubMed  CAS  Google Scholar 

  59. Maguire RT, Pascucci VL, Maroli AN, Gulfo JV. Immunoscintigraphy in patients with colorectal, ovarian, and prostate cancer. Results with site-specific immunoconjugates. Cancer 1993; 72: 3453–3462.

    Article  PubMed  CAS  Google Scholar 

  60. Frangioni JV. New technologies for human cancer imaging. Journal of Clinical Oncology 2008; 26: 4012–4021.

    Article  PubMed  Google Scholar 

  61. Gómez-Almaguer D et al. Alemtuzumab for the treatment of steroid-refractory acute graft-versus-host disease. Biology of Blood and Marrow Transplantation 2008; 14: 10–15.

    Article  PubMed  CAS  Google Scholar 

  62. Browning JL. B cells move to centre stage: novel opportunities for autoimmune disease treatment. Nature Reviews Drug Discovery 2006; 5: 564–576.

    Article  PubMed  CAS  Google Scholar 

  63. Cheson BD, Leonard JP. Monoclonal antibody therapy for B-cell non-Hodgkin's lymphoma. The New England Journal of Medicine 2008; 359: 613–626.

    Article  PubMed  CAS  Google Scholar 

  64. McLaughlin P et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. Journal of Clinical Oncology 1998; 16: 2825–2833.

    PubMed  CAS  Google Scholar 

  65. Cragg M, Walshe C, Ivanov A, Glennie M. The biology of CD20 and its potential as a target for mAb therapy. Current Directions in Autoimmunity 2005; 8: 140–174.

    Article  PubMed  CAS  Google Scholar 

  66. Stolz C et al. Targeting Bcl-2 family proteins modulates the sensitivity of B-cell lymphoma to Rituximab-induced apoptosis. Blood 2008; 112: 3312–3321.

    Google Scholar 

  67. Reed JC. Bcl-2-family proteins and hematologic malignancies: history and future prospects. Blood 2008; 111: 3322–3330.

    Article  PubMed  CAS  Google Scholar 

  68. Mounier N et al. Rituximab plus CHOP (R-CHOP) overcomes bcl-2--associated resistance to chemotherapy in elderly patients with diffuse large B-cell lymphoma (DLBCL). Blood 2003; 101: 4279–4284.

    Article  PubMed  CAS  Google Scholar 

  69. Lossos IS et al. Expression of a single gene, BCL-6, strongly predicts survival in patients with diffuse large B-cell lymphoma. Blood 2001; 98: 945–951.

    Article  PubMed  CAS  Google Scholar 

  70. Winter JN et al. Prognostic significance of Bcl-6 protein expression in DLBCL treated with CHOP or R-CHOP: a prospective correlative study. Blood 2006; 107: 4207–4213.

    Article  PubMed  CAS  Google Scholar 

  71. Harris NL et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 1994; 84: 1361–1392.

    PubMed  CAS  Google Scholar 

  72. Pfreundschuh M et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. The Lancet Oncology 2006; 7: 379–391.

    Article  PubMed  CAS  Google Scholar 

  73. Feugier P et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d'Etude des Lymphomes de l'Adulte. Journal of Clinical Oncology 2005; 23: 4117–4126.

    Article  PubMed  CAS  Google Scholar 

  74. Habermann TM et al. Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. Journal of Clinical Oncology 2006; 24: 3121–3127.

    Article  PubMed  CAS  Google Scholar 

  75. Armitage JO, Weisenburger DD. New approach to classifying non-Hodgkin's lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin's Lymphoma Classification Project. Journal of Clinical Oncology 1998; 16: 2780–2795.

    PubMed  CAS  Google Scholar 

  76. Maloney DG et al. IDEC-C2B8: results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin's lymphoma. Journal of Clinical Oncology 1997; 15: 3266–3274.

    PubMed  CAS  Google Scholar 

  77. Hiddemann W et al. Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood 2005; 106: 3725–3732.

    Article  PubMed  CAS  Google Scholar 

  78. van Oers MHJ et al. Rituximab maintenance improves clinical outcome of relapsed/resistant follicular non-Hodgkin lymphoma in patients both with and without rituximab during induction: results of a prospective randomized phase 3 intergroup trial. Blood 2006; 108: 3295–3301.

    Article  PubMed  CAS  Google Scholar 

  79. Keating MJ et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. Journal of Clinical Oncology 2005; 23: 4079–4088.

    Article  PubMed  CAS  Google Scholar 

  80. DeNardo GL et al. Maximum-tolerated dose, toxicity, and efficacy of (131)I-Lym-1 antibody for fractionated radioimmunotherapy of non-Hodgkin's lymphoma. Journal of Clinical Oncology 1998; 16: 3246–3256.

    PubMed  CAS  Google Scholar 

  81. Witzig TE et al. Phase I/II trial of IDEC-Y2B8 radioimmunotherapy for treatment of relapsed or refractory CD20+ B-cell non-Hodgkin's lymphoma. Journal of Clinical Oncology 1999; 17: 3793–3803.

    PubMed  CAS  Google Scholar 

  82. Gordon LI et al. Durable responses after ibritumomab tiuxetan radioimmunotherapy for CD20+ B-cell lymphoma: long-term follow-up of a phase 1/2 study. Blood 2004; 103: 4429–4431.

    Article  PubMed  CAS  Google Scholar 

  83. Witzig TE et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin's lymphoma. Journal of Clinical Oncology 2002; 20: 3262–3269.

    Article  PubMed  CAS  Google Scholar 

  84. Witzig TE et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma. Journal of Clinical Oncology 2002; 20: 2453–2463.

    Article  PubMed  CAS  Google Scholar 

  85. Vose JM et al. Multicenter phase II study of iodine-131 tositumomab for chemotherapy-relapsed/refractory low-grade and transformed low-grade B-cell non-Hodgkin’s lymphomas. Journal of Clinical Oncology 2000; 18: 1316–1323.

    PubMed  CAS  Google Scholar 

  86. Horning SJ et al. Efficacy and safety of tositumomab and iodine-131 tositumomab (Bexxar) in B-cell lymphoma, progressive after rituximab. Journal of Clinical Oncology 2005; 23: 712–719.

    Article  PubMed  CAS  Google Scholar 

  87. Kaminski MS et al. Pivotal study of iodine I 131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin's lymphomas. Journal of Clinical Oncology 2001; 19: 3918–3928.

    PubMed  CAS  Google Scholar 

  88. Kaminski MS et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. The New England Journal of Medicine 2005; 352: 441–449.

    Article  PubMed  CAS  Google Scholar 

  89. Ansell SM et al. Subsequent chemotherapy regimens are well tolerated after radioimmunotherapy with yttrium-90 ibritumomab tiuxetan for non-Hodgkin's lymphoma. Journal of Clinical Oncology 2002; 20: 3885–3890.

    Article  PubMed  CAS  Google Scholar 

  90. Press OW et al. Phase II trial of CHOP chemotherapy followed by tositumomab/iodine I-131 tositumomab for previously untreated follicular non-Hodgkin's lymphoma: five-year follow-up of southwest oncology group protocol S9911. Journal of Clinical Oncology 2006; 24: 4143–4149.

    Article  PubMed  CAS  Google Scholar 

  91. Nademanee A et al. A phase 1/2 trial of high-dose yttrium-90-ibritumomab tiuxetan in combination with high-dose etoposide and cyclophosphamide followed by autologous stem cell transplantation in patients with poor-risk or relapsed non-Hodgkin lymphoma. Blood 2005; 106: 2896–2902.

    Article  PubMed  CAS  Google Scholar 

  92. Kaminski MS et al. Radioimmunotherapy with iodine 131I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood 2000; 96: 1259–1266.

    PubMed  CAS  Google Scholar 

  93. Czuczman MS et al. Treatment-related myelodysplastic syndrome and acute myelogenous leukemia in patients treated with ibritumomab tiuxetan radioimmunotherapy. Journal of Clinical Oncology 2007; 25: 4285–4292.

    Article  PubMed  CAS  Google Scholar 

  94. Bennett JM et al. Assessment of treatment-related myelodysplastic syndromes and acute myeloid leukemia in patients with non-Hodgkin lymphoma treated with tositumomab and iodine I131 tositumomab. Blood 2005; 105: 4576–4582.

    Article  PubMed  CAS  Google Scholar 

  95. Larson RA, Sievers EL, Michael R. Loken Jacques JM, van Dongen Irwin D, Bernstein Frederick R. Appelbaum Mylotarg Study Group. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer 2005; 104: 1442–1452.

    Article  PubMed  CAS  Google Scholar 

  96. Wadleigh M et al. Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood 2003; 102: 1578–1582.

    Article  PubMed  CAS  Google Scholar 

  97. Hale G et al. Removal of T cells from bone marrow for transplantation: a monoclonal antilymphocyte antibody that fixes human complement. Blood 1983; 62: 873–882.

    PubMed  CAS  Google Scholar 

  98. Keating MJ et al. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood 2002; 99: 3554–3561.

    Article  PubMed  CAS  Google Scholar 

  99. Hillmen P et al. Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia. Journal of Clinical Oncology 2007; 25: 5616–5623.

    Article  PubMed  CAS  Google Scholar 

  100. Thursky KA et al. Spectrum of infection, risk and recommendations for prophylaxis and screening among patients with lymphoproliferative disorders treated with alemtuzumab. British Journal of Haematology 2006; 132: 3–12.

    Article  PubMed  Google Scholar 

  101. Carson WE et al. Interleukin-2 enhances the natural killer cell response to Herceptin-coated Her2/neu-positive breast cancer cells. European Journal of Immunology 2001; 31: 3016–3025.

    Article  PubMed  CAS  Google Scholar 

  102. Slamon DJ et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.

    Article  PubMed  CAS  Google Scholar 

  103. Wolff AC et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Journal of Clinical Oncology 2007; 25: 118–145.

    Article  PubMed  CAS  Google Scholar 

  104. Vogel CL et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. Journal of Clinical Oncology 2002; 20: 719–726.

    Article  PubMed  CAS  Google Scholar 

  105. Cobleigh MA et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. Journal of Clinical Oncology 1999; 17: 2639–2648.

    PubMed  CAS  Google Scholar 

  106. Baselga J et al. Phase II study of weekly intravenous recombinant humanized anti- p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. Journal of Clinical Oncology 1996; 14: 737–744.

    PubMed  CAS  Google Scholar 

  107. Slamon DJ et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. The New England Journal of Medicine 2001; 344: 783–792.

    Article  PubMed  CAS  Google Scholar 

  108. Lee K-F et al. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 1995; 378: 394–398.

    Article  PubMed  CAS  Google Scholar 

  109. Ewer SM, Ewer MS. Cardiotoxicity profile of trastuzumab. Drug Safety 2008; 31: 459–467.

    Article  PubMed  CAS  Google Scholar 

  110. Seidman A et al. Cardiac dysfunction in the trastuzumab clinical trials experience. Journal of Clinical Oncology 2002; 20: 1215–1221.

    Article  PubMed  CAS  Google Scholar 

  111. Smith I et al. 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. The Lancet 2007; 369: 29–36.

    Article  CAS  Google Scholar 

  112. Joensuu H et al. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. The New England Journal of Medicine 2006; 354: 809–820.

    Article  PubMed  CAS  Google Scholar 

  113. Kawamoto T et al. Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America 1983; 80: 1337–1341.

    Article  PubMed  CAS  Google Scholar 

  114. Thomas SM, Grandis JR. Pharmacokinetic and pharmacodynamic properties of EGFR inhibitors under clinical investigation. Cancer Treatment Reviews 2004; 30: 255–268.

    Article  PubMed  CAS  Google Scholar 

  115. Cunningham D et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. The New England Journal of Medicine 2004; 351: 337–345.

    Article  PubMed  CAS  Google Scholar 

  116. Sobrero AF et al. EPIC: Phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. Journal of Clinical Oncology 2008; 26: 2311–2319.

    Article  PubMed  CAS  Google Scholar 

  117. Van Cutsem E et al. Randomized phase III study of irinotecan and 5-FU/FA with or without cetuximab in the first-line treatment of patients with metastatic colorectal cancer (mCRC): The CRYSTAL trial. Journal of Clinical Oncology (Meeting Abstracts) 2007; 25: 4000.

    Google Scholar 

  118. Bonner J et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. The New England Journal of Medicine 2006; 354: 567–578.

    Article  PubMed  CAS  Google Scholar 

  119. Katchen B, Buxbaum S. Disposition of a new, nonsteroid, antiandrogen, alpha,alpha,alpha-trifluoro-2-methyl-4'-nitro-m-propionotoluidide (Flutamide), in men following a single oral 200 mg dose. Journal of Clinical Endocrinology & Metabolism 1975; 41: 373–379.

    Article  CAS  Google Scholar 

  120. Vermorken JB et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. The New England Journal of Medicine 2008; 359: 1116–1127.

    Article  PubMed  CAS  Google Scholar 

  121. Chung KY et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. Journal of Clinical Oncology 2005; 23: 1803–1810.

    Article  PubMed  CAS  Google Scholar 

  122. Messersmith WA, Hidalgo M. Panitumumab, a monoclonal anti epidermal growth factor receptor antibody in colorectal cancer: another one or the one? Clinical Cancer Research 2007; 13: 4664–4666.

    Article  PubMed  CAS  Google Scholar 

  123. Saltz L. Epidermal growth factor receptor-negative colorectal cancer: is there truly such an entity? Clinical Colorectal Cancer 2005; 5(Suppl.2): S98–S100.

    Article  PubMed  CAS  Google Scholar 

  124. Scartozzi M et al. Epidermal Growth Factor Receptor (EGFR) status in primary colorectal tumors does not correlate with EGFR expression in related metastatic sites: implications for treatment with EGFR-targeted monoclonal antibodies. Journal of Clinical Oncology 2004; 22: 4772–4778.

    Article  PubMed  CAS  Google Scholar 

  125. Wacker B et al. Correlation between development of rash and efficacy in patients treated with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib in two large phase III studies. Clinical Cancer Research 2007; 13: 3913–3921.

    Article  PubMed  CAS  Google Scholar 

  126. Jonker D et al. Cetuximab for the treatment of colorectal cancer. The New England Journal of Medicine 2007; 357: 2040–2048.

    Article  PubMed  CAS  Google Scholar 

  127. Saltz L et al. Bevacizumab (Bev) in combination with XELOX or FOLFOX4: Updated efficacy results from XELOX-1/ NO16966, a randomized phase III trial in first-line metastatic colorectal cancer. Journal of Clinical Oncology (Meeting Abstracts) 2007; 25: 4028.

    Google Scholar 

  128. Hirsch FR et al. Increased EGFR gene copy number detected by fluorescent in situ hybridization predicts outcome in non-small-cell lung cancer patients treated with cetuximab and chemotherapy. Journal of Clinical Oncology 2008; 26: 3351–3357.

    Article  PubMed  CAS  Google Scholar 

  129. Personeni N et al. Clinical usefulness of EGFR gene copy number as a predictive marker in colorectal cancer patients treated with cetuximab: a fluorescent in situ hybridization study. Clinical Cancer Research 2008; 14: 5869–5876.

    Article  PubMed  CAS  Google Scholar 

  130. Massarelli E et al. KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clinical Cancer Research 2007; 13: 2890–2896.

    Article  PubMed  CAS  Google Scholar 

  131. De Roock W et al. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Annals of Oncology 2008; 19: 508–515.

    Article  PubMed  Google Scholar 

  132. Khambata-Ford S et al. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. Journal of Clinical Oncology 2007; 25: 3230–3237.

    Article  PubMed  CAS  Google Scholar 

  133. Rowinsky EK et al. Safety, pharmacokinetics, and activity of ABX-EGF, a fully human anti-epidermal growth factor receptor monoclonal antibody in patients with metastatic renal cell cancer. Journal of Clinical Oncology 2004; 22: 3003–3015.

    Article  PubMed  CAS  Google Scholar 

  134. Van Cutsem E et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. Journal of Clinical Oncology 2007; 25: 1658–1664.

    Article  PubMed  CAS  Google Scholar 

  135. Cardones A, Banez L. VEGF inhibitors in cancer therapy. Current Pharmaceutical Design 2006; 12: 387–394.

    Article  PubMed  CAS  Google Scholar 

  136. Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nature Reviews Cancer 2008; 8: 579–591.

    Article  PubMed  CAS  Google Scholar 

  137. Willett CG et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nature Medicine 2004; 10: 145–147.

    Article  PubMed  CAS  Google Scholar 

  138. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307: 58–62.

    Article  PubMed  CAS  Google Scholar 

  139. Scappaticci FA et al. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. Journal of the National Cancer Institute 2007; 99: 1232–1239.

    Article  PubMed  Google Scholar 

  140. Reinacher-Schick A, Pohl M, Schmiegel W. Drug insight: antiangiogenic therapies for gastrointestinal cancers-focus on monoclonal antibodies. Nature Clinical Practice Gastroenterology and Hepatology 2008; 5: 250–267.

    Article  PubMed  CAS  Google Scholar 

  141. Hurwitz H, Shermini S. Bevacizumab in the treatment of metastatic colorectal cancer: safety profile and management of adverse events. Seminars in Oncology 2006; 33: s26–s34.

    Article  PubMed  CAS  Google Scholar 

  142. Johnson DH et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. Journal of Clinical Oncology 2004; 22: 2184–2191.

    Article  PubMed  CAS  Google Scholar 

  143. Vredenburgh JJ et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. Journal of Clinical Oncology 2007; 25: 4722–4729.

    Article  PubMed  CAS  Google Scholar 

  144. Akerley WL et al. Acceptable safety of bevacizumab therapy in patients with brain metastases due to non-small cell lung cancer. Journal of Clinical Oncology (Meeting Abstracts) 2008; 26: 8043.

    Google Scholar 

  145. Dansin E et al. Safety of bevacizumab-based therapy as first-line treatment of patients with advanced or recurrent non-squamous non-small cell lung cancer (NSCLC): MO19390 (SAiL). Journal of Clinical Oncology (Meeting Abstracts) 2008; 26: 8085.

    Google Scholar 

  146. Lynch TJ et al. Preliminary treatment patterns and safety outcomes for non-small cell lung cancer (NSCLC) from ARIES, a bevacizumab treatment observational cohort study (OCS). Journal of Clinical Oncology (Meeting Abstracts) 2008; 26: 8077.

    Google Scholar 

  147. Fuchs CS et al. Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C study. Journal of Clinical Oncology 2007; 25: 4779–4786.

    Article  PubMed  CAS  Google Scholar 

  148. Giantonio BJ et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the eastern cooperative oncology group study E3200. Journal of Clinical Oncology 2007; 25: 1539–1544.

    Article  PubMed  CAS  Google Scholar 

  149. Hurwitz H et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. The New England Journal of Medicine 2004; 350: 2335–2342.

    Article  PubMed  CAS  Google Scholar 

  150. Miller K et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. The New England Journal of Medicine 2007; 357: 2666–2676.

    Article  PubMed  CAS  Google Scholar 

  151. Spalding B. Thumbs up for Avastin. Nature Biotechnology 2008; 26: 365–365.

    Article  PubMed  CAS  Google Scholar 

  152. Sandler A et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. The New England Journal of Medicine 2006; 355: 2542–2550.

    Article  PubMed  CAS  Google Scholar 

  153. Manegold C et al. Randomised, double-blind multicentre phase III study of bevacizumab in combination with cisplatin and gemcitabine in chemotherapy-naive patients with advanced or recurrent non-squamous non-small cell lung cancer (NSCLC): BO17704. Journal of Clinical Oncology (Meeting Abstracts) 2007; 25: LBA7514.

    Google Scholar 

  154. Yang J et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. The New England Journal of Medicine 2003; 349: 427–434.

    Article  PubMed  CAS  Google Scholar 

  155. Escudier B et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. The Lancet 2007; 370: 2103–2111.

    Article  Google Scholar 

  156. Vredenburgh JJ et al. Phase II Trial of bevacizumab and irinotecan in recurrent malignant glioma. Clinical Cancer Research 2007; 13: 1253–1259.

    Article  PubMed  CAS  Google Scholar 

  157. Kindler HL et al. A double-blind, placebo-controlled, randomized phase III trial of gemcitabine (G) plus bevacizumab (B) vs. gemcitabine plus placebo (P) in patients (pts) with advanced pancreatic cancer (PC): A preliminary analysis of Cancer and Leukemia Group B (CALGB). Journal of Clinical Oncology (Meeting Abstracts) 2007; 25: 4508.

    Google Scholar 

  158. Longo R, Gasparini G. Challenges for patient selection with VEGF inhibitors. Cancer Chemotherapy and Pharmacology 2007; 60: 151–170.

    Article  PubMed  CAS  Google Scholar 

  159. Schneider BP et al. Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. Journal of Clinical Oncology 2008; 26: 4672–4678.

    Article  PubMed  CAS  Google Scholar 

  160. Yang SX et al. Gene expression profile and angiogenic markers correlate with response to neoadjuvant bevacizumab followed by bevacizumab plus chemotherapy in breast cancer. Clinical Cancer Research 2008; 14: 5893–5899.

    Article  PubMed  CAS  Google Scholar 

  161. Shojaei F et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnology 2007; 25: 911–920.

    Article  PubMed  CAS  Google Scholar 

  162. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nature Reviews Cancer 2008; 8: 592–603.

    Article  PubMed  CAS  Google Scholar 

  163. Bunn PA, Jr., Thatcher N. Conclusion. Oncologist 2008; 13: 37–46.

    Article  PubMed  Google Scholar 

  164. Sehn LH et al. Rapid infusion rituximab in combination with corticosteroid-containing chemotherapy or as maintenance therapy is well tolerated and can safely be delivered in the community setting. Blood 2007; 109: 4171–4173.

    Article  PubMed  CAS  Google Scholar 

  165. Chung CH. Managing premedications and the risk for reactions to infusional monoclonal antibody therapy. Oncologist 2008; 13: 725–732.

    Article  PubMed  CAS  Google Scholar 

  166. Winkler U et al. Cytokine-release syndrome in patients with B-cell chronic lymphocytic leukemia and high lymphocyte counts after treatment with an anti-CD20 monoclonal antibody (Rituximab, IDEC-C2B8). Blood 1999; 94: 2217–2224.

    PubMed  CAS  Google Scholar 

  167. Breslin S. Cytokine-release syndrome: overview and nursing implications. Clinical Journal of Oncology Nursing 2007; 11: 37–42.

    Article  PubMed  Google Scholar 

  168. Herceptin (trastuzumab) Package Insert. South San Franciso, CA: Genentech, Inc., Nov 2006.

    Google Scholar 

  169. Erbitux (cetuximab) Package Insert. New York: ImClone Systems Inc and Princeton, NJ: Bristol-Myers Squibb Company, Oct 2007.

    Google Scholar 

  170. Timoney J et al. Cetuximab use without chronic antihistamine premedication. Journal of Clinical Oncology (Meeting Abstracts) 2006; 24: 13521.

    Google Scholar 

  171. O'Neil BH et al. High incidence of cetuximab-related infusion reactions in tennessee and North Carolina and the association with atopic history. Journal of Clinical Oncology 2007; 25: 3644–3648.

    Article  PubMed  Google Scholar 

  172. Chung C et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-{alpha}-1,3-galactose. The New England Journal of Medicine 2008; 358: 1109–1117.

    Article  PubMed  CAS  Google Scholar 

  173. Cheng X, Hung M-C. Breast cancer brain metastases. Cancer and Metastasis Reviews 2007; 26: 635–643.

    Article  PubMed  Google Scholar 

  174. Patel S et al. Safety and feasibility of convection-enhanced delivery of Cotara for the treatment of malignant glioma: initial experience in 51 patients. Neurosurgery 2005; 56: 1243–1253.

    Article  PubMed  Google Scholar 

  175. Qiu X-Q et al. Small antibody mimetics comprising two complementarity-determining regions and a framework region for tumor targeting. Nature Biotechnology 2007; 25: 921–929.

    Article  PubMed  CAS  Google Scholar 

  176. Cope DA et al. Enhanced delivery of a monoclonal antibody F(ab')2 fragment to subcutaneous human glioma xenografts using local hyperthermia. Cancer Research 1990; 50: 1803–1809.

    PubMed  CAS  Google Scholar 

  177. Pieramici DJ, Rabena MD. Anti-VEGF therapy: comparison of current and future agents. Eye 2008; 22: 1330–1336.

    Article  PubMed  CAS  Google Scholar 

  178. Wong JYC et al. Pilot trial evaluating an 123I-labeled 80-kilodalton engineered anticarcinoembryonic antigen antibody fragment (cT84.66 Minibody) in patients with colorectal cancer. Clinical Cancer Research 2004; 10: 5014–5021.

    Article  PubMed  CAS  Google Scholar 

  179. Ribas A et al. Phase III, open-label, randomized, comparative study of tremelimumab (CP-675,206) and chemotherapy (temozolomide [TMZ] or dacarbazine [DTIC]) in patients with advanced melanoma. Journal of Clinical Oncology (Meeting Abstracts) 2008; 26: LBA9011.

    Google Scholar 

  180. Weber JS et al. Safety and efficacy of ipilimumab with or without prophylactic budesonide in treatment-naïve and previously treated patients with advanced melanoma. Journal of Clinical Oncology (Meeting Abstracts) 2008; 26: 9010.

    Google Scholar 

  181. Karp DD et al. High activity of the anti-IGF-IR antibody CP-751,871 in combination with paclitaxel and carboplatin in squamous NSCLC. Journal of Clinical Oncology (Meeting Abstracts) 2008; 26: 8015.

    Google Scholar 

  182. Rodon J, DeSantos V, Ferry RJ Jr., Kurzrock R. Early drug development of inhibitors of the insulin-like growth factor-I receptor pathway: Lessons from the first clinical trials. Molecular Cancer Therapeutics 2008; 7: 2575–2588.

    Article  PubMed  CAS  Google Scholar 

  183. Schrag D. The price tag on progress – chemotherapy for colorectal cancer. The New England Journal of Medicine 2004; 352: 317–319.

    Article  Google Scholar 

  184. Nadler ES, Eckert B, Neumann PJ. Do oncologists believe new cancer drugs offer good value? Journal of Clinical Oncology (Meeting Abstracts) 2005; 23: 6011.

    Google Scholar 

  185. Grabowski H. Follow-on biologics: data exclusivity and the balance between innovation and competition. Nature Reviews Drug Discovery 2008; 7: 479–488.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Gerber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Axelson, M.D., Gerber, D.E. (2009). Pharmaceutical Perspectives of Cancer Therapeutics: Current Therapeutic Uses of Monoclonal Antibodies. In: Lu, Y., Mahato, R. (eds) Pharmaceutical Perspectives of Cancer Therapeutics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0131-6_11

Download citation

Publish with us

Policies and ethics