B-C-N Nanotubes and Related Nanostructures pp 271-291 | Cite as
Boron and Boron Carbide Materials: Nanostructures and Crystalline Solids
- 2 Citations
- 952 Downloads
Abstract
Owing to the rapid developments related to the novel B x C y N z ternary structures, the pedagogical review chapter has several antecedents as new results have emerged. Specifically, we will focus on the B x C y (with x, y ;= ;0–1) hybrid material where the qualitative trend, in general, can be described by the ratio of its constituents. There is, however, a significant asymmetric popularity between the boron and carbon in the scientific literature. Carbon-based structures are well studied compared with boron-based structures. Consequently, understanding of the role played by boron in the formation of the B x C y hybrid structures remains somewhat incomplete. We, therefore, devote a substantial part of discussion on the boron-related structures with an aim to achieve the goal of a complete understanding of the physics and chemistry of the hybrid B x C y material.
Keywords
Boron Atom Boron Carbide Boron Cluster Elemental Boron Tubular ConfigurationReferences
- 1.W. Kohn, Rev. Mod. Phys. 71, S59 (1999).Google Scholar
- 2.Y.K. Yap, Boron-carbon nitride nanohybrids, In: H.S. Nalwa (Ed.) Encyclopedia of Nanoscience and Nanotechnology, 1, 383–394 (American Scientific, New York, 2004).Google Scholar
- 3.A.R. Badzian, T. Niemyski, S. Appenheimer, and E. Olkusnik, In: F.A. Claski (Ed.) Proceedings of the Third International Conference on Chemical Vapor Deposition (Edited by F.A. Claski), 747 (1972).Google Scholar
- 4.E.L. Muetterties (Ed.), The Chemistry of Boron and Its Compounds (John Wiley, New York, 1967).Google Scholar
- 5.E.L. Muetterties (Ed.), Boron Hydride Chemistry (Academic, New York, 1975).Google Scholar
- 6.L. Pauling, Nature of Chemical Bond and the Structure of Molecules and Crystals, 3rd Edition (Cornell University Press, Itacha, NY, 1960).Google Scholar
- 7.A. Quandt and I. Boustani, ChemPhysChem 6, 2001 (2005).Google Scholar
- 8.K.C. Buschbeck, Boron Compounds, Elemental Boron, and Boron Carbides, Gmelin Handbook of Inorganic Chemistry, Vol. 13 (Springer, Berlin, 1981).Google Scholar
- 9.D.W. Bullett, J. Phys. C Solid State Phys. 15, 415 (1982).Google Scholar
- 10.C. Mailhiot, J.B. Grant, and A.K. McMahan, Phys. Rev. B 42, 9033 (1990).Google Scholar
- 11.D. Li, Y. Xu, and W.Y. Ching, Phys. Rev. B 45, 5895 (1992).Google Scholar
- 12.N. Vast, S. Baroni, G. Zerah, J.M. Besson, A. Polian, J.C. Chervin, and T. Grimsditch, Phys. Rev. Lett. 78, 693 (1997).Google Scholar
- 13.M. Fujimori, T. Tanaka, T. Nakayama, E. Nishibori, K. Kimura, M. Takata, and M. Sakata, Phy. Rev. Lett. 82, 4452 (1999).Google Scholar
- 14.J. Zhao and J.P. Lu, Phys. Rev. B 66, 092101 (2002).Google Scholar
- 15.U. Häussermann, S.I. Simak, R. Ahuja, and B. Johansson, Phys. Rev. Lett 90, 065701 (2003).Google Scholar
- 16.A. Masago, K. Shirai, and H. Katayama-Yoshida, Phys. Rev. B 73, 104102 (2006).Google Scholar
- 17.R.J. Nelmes, J.S. Loveday, D.R. Allan, J.M. Besson, G. Hamel, P. Grima, and S. Hull, Phys. Rev. B 47, 7668 (1993).Google Scholar
- 18.J.C. Thompson and W.J. McDonald, Phys. Rev. 132, 82 (1963).Google Scholar
- 19.D.N. Sanz, P. Loubeyre, and M. Mezouar, Phys. Rev. Lett. 89, 245501 (2002).Google Scholar
- 20.D.A. Young, Phase Diagrams of the Elements (University of California Press, Berkeley, CA, 1991).Google Scholar
- 21.R. Kawai and J.H. Weare, J. Chem. Phys. 95, 1151 (1991).Google Scholar
- 22.R. Kawai and J.H. Weare, Chem. Phys. Lett. 191, 311 (1992).Google Scholar
- 23.H.C. Longuet-HigginsM. de. V. Roberts, Proc. R. Soc. Lond. Ser. A A224, 336 (1955).Google Scholar
- 24.H.C. Longuet-Higgins, Q. Rev. Chem. Soc. 11, 121 (1957).Google Scholar
- 25.K.C. Lau and R. Pandey, J. Phys. Chem. C, 111, 2906 (2007).Google Scholar
- 26.M.I. Eremets, V.V. Struzhkin, H.K. Mao, and R.J. Hemley, Science 293, 272 (2001).Google Scholar
- 27.T.H. Geballe, Science 293, 223 (2001).Google Scholar
- 28.D.A. Papaconstantopoulos and M.J. Mehl, Phys. Rev. B 65, 172510 (2002).Google Scholar
- 29.W.N. Lipscomb, Boron Hydrides (Benjamin, New York, 1963).Google Scholar
- 30.W.N. Lipscomb, J. Less Common Met. 82, 1 (1981).Google Scholar
- 31.E.D. Jemmis, M.M. Balakrishnarajan, and P.D. Pancharatna, J. Am. Chem. Soc. 123, 4313 (2001).Google Scholar
- 32.E.D. Jemmis, M.M. Balakrishnarajan, and P.D. Pancharatna, Chem. Rev. 102, 93 (2002).Google Scholar
- 33.E.D. Jemmis and E.G. Jayasree, Acc. Chem. Res. 36, 816 (2003).Google Scholar
- 34.L. Hanley and S.L. Anderson, J. Phys. Chem. 91, 5161 (1987).Google Scholar
- 35.L. Hanley, J.L. Whittena, and S.L. Anderson, J. Phys. Chem. 92, 5803 (1988).Google Scholar
- 36.S.J. La Placa, P.A. Roland, and J.J. Wynne, Chem. Phys. Lett. 190, 163 (1992).Google Scholar
- 37.P.A. Hintz, M.B. Sowa, S.A. Ruatta, and S.L. Anderson, J. Chem. Phys. 94, 6446 (1991).Google Scholar
- 38.R. Kawai and J.H. Weare, J. Chem. Phys. 95, 1151 (1991).Google Scholar
- 39.R. Kawai and J.H. Weare, Chem. Phys. Lett. 191, 311 (1992).Google Scholar
- 40.M.B. Sowa, A.L. Snolanoff, A. Lapicki, and S.L. Anderson, J. Chem. Phys. 106, 9511 (1997).Google Scholar
- 41.H.J. Zhai, B. Kiran, J. Li, and L.S. Wang, Nat. Mater. 2, 827 (2003).Google Scholar
- 42.B. Kiran, S. Bulusu, H. Zhai, S. Yoo, X.C. Zeng, and L.S. Wang, Proc. Natl Acad. Sci. USA 102, 961 (2005).Google Scholar
- 43.C.J. Otten, O.R. Lourie, M. Yu, J.M. Cowley, M.J. Dyer, R.S. Ruoff, and W.E. Buhro, J. Am. Chem. Soc. 124, 4564 (2002).Google Scholar
- 44.T.T. Xu, J. Zheng, N. Wu, A.W. Nichollas, J.R. Roth, D.A. Dikin, and R.S. Ruoff, Nano Lett. 4, 963 (2004).Google Scholar
- 45.D. Ciuparu, R.F. Klie, Y. Zhu, and L. Pfefferle, J. Phys. Chem. B 108, 3967 (2004).Google Scholar
- 46.I. Boustani, Phys. Rev. B 55, 16426 (1997).Google Scholar
- 47.I. Boustani and A. Quandt, Europhys. Lett. 39, 527 (1997).Google Scholar
- 48.K.C. Lau and R. Pandey, Comput. Lett. (Special Issue: Clusters: From a few atoms to nanoparticles) 1, 259 (2005).Google Scholar
- 49.N.G. Szwacki, A. Sadrzadeh, and B.I. Yakobson, Phys. Rev. Lett. 98, 166804 (2007).Google Scholar
- 50.A.K. Ray, I.A. Howard, and K.M. Kanal, Phys. Rev. B 45, 14247 (1992).Google Scholar
- 51.V. Bonacic-Koutecky, P. Fantucci, and J. Koutecky, Chem. Rev. 91, 1035 (1991).Google Scholar
- 52.H. Kato, K. Yamashita, and K. Morokuma, Chem. Phys. Lett. 190, 361 (1992).Google Scholar
- 53.I. Boustani, Int. J. Quant. Chem. 52, 1081 (1994).Google Scholar
- 54.I. Boustani, Chem. Phys. Lett. 240, 135 (1995).Google Scholar
- 55.A. Ricca and C.W. Bauschlicher, Chem. Phys. 208, 233 (1996).Google Scholar
- 56.F.L. Gu, X. Yang, A.C. Tang, H. Jiao, and P.V.R. Schleyer, J. Comput. Chem. 19, 203 (1998).Google Scholar
- 57.J.E. Fowler and J.M. Ugalde, J. Phys. Chem. A 104, 397 (2000).Google Scholar
- 58.H.J. Zhai, L.S. Wang, A.N. Alexandrova, A.I. Boldyrev, and V.G. Zakrzewski, J. Phys. Chem. A 107, 9313 (2003).Google Scholar
- 59.H.J. Zhai, L.S. Wang, A.N. Alexandrova, and A.I. Boldyrev, J. Chem. Phys. 117, 7917 (2002).Google Scholar
- 60.A.N. Alexandrova, A.I. Boldyrev, H.J. Zhai, L.S. Wang, E. Steiner, and P.W. Fowler, J. Phys. Chem. A 107, 1359 (2003).Google Scholar
- 61.A.N. Alexandrova, A.I. Boldyrev, H.J. Zhai, and L.S. Wang, J. Phys. Chem. A 108, 3509 (2004).Google Scholar
- 62.H.J. Zhai, A.N. Alexandrova, K.A. Birch, A.I. Boldyrev, and L.S. Wang, Angew. Chem. Int. Ed. 42, 6004 (2003).Google Scholar
- 63.J.E. Fowler and J.M. Ugalde, J. Phys. Chem. A 104, 397 (2000).Google Scholar
- 64.J. Aihara, J. Phys. Chem. A 105, 5486 (2001).Google Scholar
- 65.M.A.L. Marques and S. Botti, J. Chem. Phys. 123, 014310 (2005).Google Scholar
- 66.K.C. Lau, M.D. Deshpande, R. Pati, and R. Pandey, Int. J. Quant. Chem. 103, 866 (2005).Google Scholar
- 67.S. Chacko, D.G. Kanhere, and I. Boustani, Phys. Rev. B 68, 035414 (2003).Google Scholar
- 68.I. Boustani, A. Rubio, and J.A. Alonso, Chem. Phys. Lett. 311, 21 (1999).Google Scholar
- 69.I. Boustani, A. Quandt, and A. Rubio, J. Solid State Chem. 154, 269 (2000).Google Scholar
- 70.R.O. Jones and G. Seifert, Phys. Rev. Lett. 79, 443 (1997).Google Scholar
- 71.R.O. Jones, J. Chem. Phys. 110, 5189 (1999).Google Scholar
- 72.H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Worth, L.T. Scott, M. Gelmont, D. Olevano, and B. Issendorff, Nature 407, 60 (2000).Google Scholar
- 73.N.G. Szwacki, Nanoscale Res. Lett. 3, 49 (2008).Google Scholar
- 74.M.H. Evans, J.D. Joannopoulos, and S.T. Pantelides, Phys. Rev. B 72, 045434 (2005).Google Scholar
- 75.I. Cabria, M.J. López, and J.A. Alonso, Nanotechnology 17, 778 (2006).Google Scholar
- 76.K.C. Lau and R. Pandey, J. Phys. Chem. B, 112, 10217 (2008).Google Scholar
- 77.J. Kunstmann and A. Quandt, Phys. Rev. B 74, 035413 (2006).Google Scholar
- 78.H. Tang and S. Ismail-Beigi, Phys. Rev. Lett. 99, 115501 (2007).Google Scholar
- 79.X. Yang, Y. Ding, and J. Ni, Phys. Rev. B 77, 041402(R) (2008).Google Scholar
- 80.K.C. Lau, R. Pati, A.C. Pineda, and R. Pandey, Chem. Phys. Lett. 418, 549 (2006).Google Scholar
- 81.K.C. Lau, R. Orlando, and R. Pandey, J. Phys. Condens. Matter 20, 125202 (2008).Google Scholar
- 82.K. Kirihara, Z. Wang, K. Kawaguchi, Y. Shimizu, T. Sasaki, N. Koshizaki, K. Soga, and K. Kimura, Appl. Phys. Lett. 86, 212101 (2005).Google Scholar
- 83.I. Boustani, A. Quandt, E. Hernández, and A. Rubio, J. Chem. Phys. 110,3176 (1999).Google Scholar
- 84.J. Kunstmann and A. Quandt, Chem. Phys. Lett. 402, 21 (2005).Google Scholar
- 85.D. Zhang, R. Zhu, and C. Liu, J. Mater. Chem. 16, 2429 (2006).Google Scholar
- 86.K.C. Lau, R. Pandey, R. Pati, and S.P. Karna, Appl. Phys. Lett. 88, 212111 (2006).Google Scholar
- 87.S. Reich, C. Thomsen, and P. Ordejon, Phys. Rev. B 65, 153407 (2002).Google Scholar
- 88.J. Tang, L. Qin, T. Sasaki, M. Yudasaka, A. Matsushita, and S. Iijima, Phys. Rev. Lett. 85, 1887 (2000).Google Scholar
- 89.C. Kittel, Introduction to Solid State Physics, 7th Edition (Wiley, New York, 1996).Google Scholar
- 90.R.B. Heimann, S.E. Evsyukov and Y. Kocack, Proc. Fifth London Int. Carbon Graphite Conf. 3, 104 (1979).Google Scholar
- 91.R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 2003).Google Scholar
- 92.M.S. Dresselhaus, G. Dresselhaus, and P. Avouris (Eds.) Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, Berlin, 2001).Google Scholar
- 93.F.P. Bundy and J.S. Kasper, J. Chem. Phys. 46, 3437 (1967).Google Scholar
- 94.T. Yagi, W. Utsumi, M. Yamakata, T. Kikegawa, and O. Shimomura, Phys. Rev. B 46, 6031 (1992).Google Scholar
- 95.H. Rydberg, M. Dion, N. Jacobson, E. Schröder, P. Hyldgaard, S.I. Simak, D.C. Langreth, and B.L. Lundqvist, Phys. Rev. Lett. 91, 126402 (2003).Google Scholar
- 96.K. Yoshizawa, T. Yumura, T. Yamabe, and S. Bandow, J. Am. Chem. Soc. 122, 11871 (2000).Google Scholar
- 97.M.S. Dresselhaus and G. Dresselhaus, Adv. Phys. 51, 1 (2002).Google Scholar
- 98.Y.P. Kudryavtsev, S.E. Evsyukov, M.B. Guseva, V.G. Babaev, and V.V. Khvostov, Russ. Chem. Bull. 42, 399 (1993).Google Scholar
- 99.B.V. Lebedev, Russ. Chem. Bull. 49, 965 (2000).Google Scholar
- 100.C.X. Shi and J. Ke (Eds.) Structure and Properties of Ceramics, Materials Science and Technology, Vol. 11 (Science Press, Beijing, 1998).Google Scholar
- 101.G.V. Tsagareishvili and F.N. Tavatze, Prog. Cryst. Growth Char. 16, 341 (1988).Google Scholar
- 102.H.T. Hall and L.A. Compton, Inorg. Chem. 4, 1213 (1965).Google Scholar
- 103.S. Han, J. Ihm, S.G. Louie, and M.L. Cohen, Phys. Rev. Lett. 80, 997 (1998).Google Scholar
- 104.K.L. Saenger, Angular distribution of ablated material, In: D.B. Chrisey and G.K. Hubler (Eds.) Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994).Google Scholar
- 105.F. Kokai, M. Taniwaki, T. Takahashi, A. Goto, M. Ishihara, K. Yamamoto, and Y. Koga, Diamond Relat. Mater. 10, 1412 (2001).Google Scholar
- 106.B. Wei, R. Vajtai, Y.J. Jung, F. Banhart, G. Ramanath, and P.M. Ajayan, J. Phys. Chem. B 106, 5807 (2002).Google Scholar
- 107.R. Lazzari, N. Vast, J.M. Besson, S. Baroni, and A.D. Corso, Phys. Rev. Lett. 83, 3230 (1999).Google Scholar
- 108.J. Donohue, The Structure of the Elements (Wiley, New York, 1974).Google Scholar
- 109.H.L. Yakel, Acta Crystallogr. B 31, 1797 (1975).Google Scholar
- 110.F. Mauri et al, Phys. Rev. Lett. 87, 085506 (2001).Google Scholar
- 111.Y. Feng et al, Phys. Rev. B 69, 125402 (2004).Google Scholar
- 112.P. Lunca-Popa et al, J. Phys. D 38, 1248 (2005).Google Scholar
- 113.G. Fanchini, J.W. McCauley, and M. Chhowalla, Phys. Rev. Lett. 97, 035502 (2006).Google Scholar
- 114.T.M. Duncan, J. Am. Chem. Soc. 106, 2270 (1984).Google Scholar
- 115.D.M. Bylander et al, Phys. Rev. B 42, 1394 (1990).Google Scholar
- 116.X.Q. Yan, W.J. Li, T. Goto, and M.W. Chen, Appl. Phys. Lett. 88, 131905 (2006).Google Scholar
- 117.D. Ghosh, G. Subhash, C.H. Lee, and Y.K. Yap, Appl. Phys. Lett. 91, 061910 (2007).Google Scholar
- 118.R.M. Chrenko, Phys. Rev. B. 7, 4560 (1970).Google Scholar
- 119.R. Kalish, Diamond Relat. Mater. 10, 1749 (2001).Google Scholar
- 120.J.E. Butler, M.W. Geis, K.E. Krohn, J. LawlessJr., S. Deneault, T.M. Lyszczarz, D. Flechtner, and R. Wright, Semicond. Sci. Technol. 18, S67 (2003).Google Scholar
- 121.J. Robertson, Semicond. Sci. Technol. 18, S12 (2003).Google Scholar
- 122.K. Thonke, Semicond. Sci. Technol. 18, S20 (2003).Google Scholar
- 123.M. Werner, O. Dorsch, H.U. Baerwind, E. Obermeier, L. Haase, W. Seifert, A. Ringhandt, C. Johnston, S. Romani, H. Bishop, and R.P. Chalker, Appl. Phys. Lett. 64, 595 (1994).Google Scholar
- 124.E.A. Ekimov, V.A. Sidorov, E.D. Bauer, N.N. Mel’nik, N.J. Curro, J.D. Thompson, and S.M. Stishov, Nature 428, 542 (2004).Google Scholar
- 125.Y. Takano, M. Nagao, I. Sakaguchi, M. Tachiki, T. Hatano, K. Kobayashi, H. Umezawa, and H.H. Kawarada, Appl. Phys. Lett. 85, 2851 (2004).Google Scholar
- 126.Z.L. Wang, Q. Luo, L.W. Liu, C.Y. Li, H.X. Yang, H.F. Yang, J.J. Li, X.Y. Lu, Z.S. Jin, L. Lu, and C.Z. Gu, Diamond Relat. Mater. 15, 659 (2006).Google Scholar
- 127.L. Boeri, J. Kortus, and O.K. Anderson, Phys. Rev. Lett. 93, 237002 (2004).Google Scholar
- 128.K.W. Lee and W.E. Pickett, Phys. Rev. Lett. 93, 237003 (2004).Google Scholar
- 129.E. Bustrarret, J. Kacmarcik, C. Marcenat, E. Gheeraert, C. Cytemann, J. Marcus, and T. Klein, Phys. Rev. Lett. 93, 237005 (2004).Google Scholar
- 130.X. Blase, Ch. Adessi, and D. Connetable, Phys. Rev. Lett. 93, 237004 (2004).Google Scholar
- 131.H.J. Xiang, Z. Li, J. Yang, J.G. Hou, and Q. Zhu, Phys. Rev. B 70, 212504 (2004).Google Scholar
- 132.F. Giustino, J.R. Yates, I. Souza, M.L. Cohen, and S.G. Louie, Phys. Rev. Lett. 98, 047005 (2007).Google Scholar
- 133.K.M. Krishnan, Appl. Phys. Lett. 58, 1857 (1991).Google Scholar
- 134.D. Tomanek, R.M. Wentzcovitch, S.G. Louie, and M.L. Cohen, Phys. Rev. B 37, 3134 (1988).Google Scholar
- 135.Q. Wang, L. Chen, and J.F. Annett, Phys. Rev. B 54, R2271 (1996).Google Scholar
- 136.F.J. Ribeiro and M.L. Cohen, Phys. Rev. B 69, 212507 (2004).Google Scholar
- 137.J. Kouvetakis, R.B. Kaner, M.L. Sattler, and N. Bartlett, J. Chem. Soc. Chem. Commun. 1758 (1986).Google Scholar
- 138.H. Sun, F.J. Ribeiro, J. Li, D. Roundy, M.L. Cohen, and S.G. Louie, Phys. Rev. B 69, 024110 (2004).Google Scholar
- 139.U. Landman and W.D. Luedtke, Faraday Discuss. Chem. Soc. 125, 1 (2004).Google Scholar
- 140.H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley, Nature 318, 162 (1985).Google Scholar
- 141.M.S. Dresselhaus, G. Dresselhaus, and P.C. Ecklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996).Google Scholar
- 142.H.W. Kroto, J.E. Fischer, and D.E. Cox (Eds.) The Fullerenes (Pergamon, Oxford, 1993).Google Scholar
- 143.H.W. Kroto and D.R.M. Walton (Eds.), The Fullerenes, New Horizons for the Chemistry, Physics, and Astrophysics of Carbon (Cambridge University Press, Cambridge, 1993).Google Scholar
- 144.L. Forro and L. Mihaly, Rep. Prog. Phys. 64, 649 (2001).Google Scholar
- 145.S. Iijima, Nature 354, 56 (1991).Google Scholar
- 146.J.J.L. Morton, A.M. Tyryshkin, A. Ardavan, K. Porfyrakis, S.A. Lyon, and G.A.D. Briggs, Nat. Phys. 2, 40 (2006).Google Scholar
- 147.S.C. Benjamin, A. Ardavan, G.A.D. Briggs, D.A. Britz, D. Gunlycke, J. Jefferson, M.A.G. Jones, D.F. Leigh, B.W. Lovett, A.N. Khlobystov, S.A. Lyon, J.J.L. Morton, K. Porfyrakis, M.R. Sambrook, and A.M. Tyryshkin, J. Phys. Condens. Matter. 18, S867 (2006).Google Scholar
- 148.S.J. Tan, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, and C. Dekker, Nature 386, 474 (1997).Google Scholar
- 149.M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Nasreen, G. Chopra, A. Zettl, A. Thess, and R.E. Smalley, Science 275, 1992 (1997).Google Scholar
- 150.K. Tsukagoshi, B.W. Alphenaar, and H. Ago, Nature 401, 572 (1999).Google Scholar
- 151.Z. Yao, H.W.Ch. Postma, L. Balents, and C. Dekker, Nature 402, 273 (1999).Google Scholar
- 152.R.D. Antonov and A.T. Johnson, Phys. Rev. Lett. 83, 3274 (1999).Google Scholar
- 153.S.J. Tan, A.R.M. Verschueren, and C. Dekker, Nature 393, 49 (1998).Google Scholar
- 154.A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).Google Scholar
- 155.M.I. Katsnelson and K.S. Novoselov, Solid State Commun. 143, 3 (2007).Google Scholar
- 156.M.S. Dresselhaus and G. Dresselhaus, Adv. Phys. 51, 1 (2002).Google Scholar
- 157.M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, and M. Ohba, Carbon 42, 2929 (2004).Google Scholar
- 158.M.F. Yu, O. Lourie, K. Moloni, T.F. Kelly, and R.S. Ruoff, Science 287, 637 (2000).Google Scholar
- 159.S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Nature 442, 282 (2006).Google Scholar
- 160.T. Guo, C. Jin, and R.E. Smalley, J. Phys. Chem. 95, 4948 (1991).Google Scholar
- 161.R. Yu, M. Zhan, D. Cheng, S. Yang, Z. Liu, and L. Zheng, J. Phys. Chem. 99, 1818 (1995).Google Scholar
- 162.J.C. Hummelen, B. Knight, J. Pavlovich, R. Gonzalez, and F. Wudl, Science, 269, 1554 (1995).Google Scholar
- 163.T. Kimura, T. Sugai, and H. Shinohara, Chem. Phys. Lett. 256, 269 (1996).Google Scholar
- 164.D. Golberg, Y. Bando, K. Kurashima, and T. Sasaki, 72, 2108 (1998).Google Scholar
- 165.Y.J. Zou, X.W. Zhang, Y.L. Li, B. Wang, H. Yan, J.Z. Cui, L.M. Liu, and D.A. Da, J. Mater. Sci. 37, 1043 (2002).Google Scholar
- 166.D.N. Mcllroy, D. Zhang, Y. Kranov, H. Han, A. Alkhateeb, and M.G. Norton, Mater. Res. Soc. Symp. Proc. 739, H5.2 (2003).Google Scholar
- 167.D.N. Mcllroy, D. Zhang, R.M. Cohen, J. Wharton, Y. Geng, M.G. Norton, G. De Stasio, B. Gilbert, L. Perfetti, J.H. Streiff, B. Broocks, and J.L. McHale, Phys. Rev. B 60, 4874 (1999).Google Scholar
- 168.H.J. Dai, E.W. Wong, Y.Z. Lu, S.S. Fan, and C.M. Lieber, Nature 375, 769 (1995).Google Scholar
- 169.J. Wei, B. Jiang, Y. Li, C. Xu, D. Wu, and B. Wei, J. Mater. Chem. 12, 3121 (2002).Google Scholar
- 170.B.C. Satishkumar, A. Govindraraj, K.R. Harikumar, J.P. Zhang, A.K. Cheetham, and C.N.R. Rao, Chem. Phys. Lett. 300, 473 (1999).Google Scholar
- 171.W.Q. Han, Y. Bando, K. Kurashima, and T. Sato, Chem. Phys. Lett. 299, 368 (1999).Google Scholar
- 172.D.L. Carroll, Ph. Redlich, X. Blase, J.C. Charlier, S. Curran, P.M. Ajayan, S. Roth, and M. Rühle, Phys. Rev. Lett. 81, 2332 (1998).Google Scholar
- 173.B.Q. Wei, R. Spolenak, P. Redlich, M. Ruhle, and E. Arzt, Appl. Phys. Lett. 74, 3149 (1999).Google Scholar
- 174.O. Ponomarenko, M.W. Radny, and P.V. Smith, Phys. Rev. B 74, 125421 (2006).Google Scholar